matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieKriterium für die Meßbarkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Maßtheorie" - Kriterium für die Meßbarkeit
Kriterium für die Meßbarkeit < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kriterium für die Meßbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:38 Di 16.05.2006
Autor: mstudent

Aufgabe
Seien $(X, [mm] \mathcal{A})$ [/mm] und [mm] $(Y,\mathcal{B})$ [/mm] meßbare Räume. [mm] $\mathcal{E}$ [/mm] erzeuge die [mm] $\sigma$-Algebra $\mathcal{B}$ [/mm] und es sei $T:X [mm] \to [/mm] Y$ eine Abbildung mit [mm] $T^{-1} [/mm] (B) [mm] \in \mathcal{A}$ [/mm] für $B [mm] \in \mathcal{E}$. [/mm] Dann ist $T$  [mm] $\mathcal{A}-\mathcal{B}$-meßbar. [/mm]

Hallo zusammen!

Ich weiß nicht so genau wie ich da vorgehen soll...

Hab mir folgendes überlegt:

Also nach Voraussetzung gilt [mm] $\{ T^{-1} (B): B \in E \} \subset [/mm] A$ , daraus folgt, dass [mm] $\sigma (\{T^{-1} (B): B \in E\}) \subset\ [/mm] A$ (weil A eine [mm] \sigma [/mm] - Algebra ist).
Nach Voraussetzung gilt auch: $B = [mm] \sigma [/mm] (E)$.
Folgt denn daraus die Behauptung??

Wäre nett wenn mir jemand helfen würde!
vielen Dank im Voraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Kriterium für die Meßbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 07:00 Fr 19.05.2006
Autor: mathiash

Hallo und guten Morgen,

wenn  [mm] {\mathcal E} [/mm] die [mm] \varsigma-Algebra {\mathcal B} [/mm] erzeugt und [mm] \forall E\in {\mathcal E} \:\: T^{-1}(E)\in {\mathcal A} [/mm] gilt,
ist daraus abzuleiten, dass [mm] \forall B\in {\mathcal B} [/mm] auch [mm] T^{-1}(B)\in {\mathcal A} [/mm] gilt. Das hast Du ja auch so geschrieben/angedeutet.

Aber gerade dies würd ich dann auch explizit machen: Da musst Du im wesentlichen begründen, daß [mm] T^{-1} [/mm] mit den Mengenoperationen,
mit denen die [mm] \varsigma-Algebra {\mathcal B} [/mm] aus [mm] {\mathcal E} [/mm] erzeugt wird, zB:

Falls  [mm] T^{-1}(E_i)\in {\mathcal A},\:\: i\in [/mm] I, so gilt auch [mm] T^{-1}(\bigcup_{i\in I} E_i)\in {\mathcal A}. [/mm]

Klar soweit ?

Gruss,

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]