matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenExp- und Log-FunktionenKrümmung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Exp- und Log-Funktionen" - Krümmung
Krümmung < Exp- und Log-Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Krümmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 13:31 Sa 08.01.2011
Autor: Kuriger

berechnen Sie die maximale Krümmung der Kurve y = ln(x), x > 0


Die allgemeine Krpmmungsformel lautet

Krümmung  = [mm] \bruch{f''(t)}{(1 + f'(t)^2)^{3/2}} [/mm]


Also:
f(x) = ln(x)
f'(x) = [mm] \bruch{1}{x} [/mm]
f''(x) = [mm] -\bruch{1}{x^2} [/mm]

Eingesetzt
Krümmung = [mm] \bruch{-\bruch{1}{x^2}}{(1+(\bruch{1}{x})^2)^{3/2}} [/mm]

Nun versuche ich das ganze etwas umzuformen

Krümmung = - [mm] \bruch{\bruch{1}{x}}{(\bruch{x^2 + 1}{x^2})^{3/2}} [/mm] = - [mm] (\bruch{\bruch{1}{x^{4/3}}}{\bruch{x^2 + 1}{x^2}})^{3/2} [/mm] = - [mm] (\bruch{x^2}{x^{4/3 * (x^2 + 1)}})^{3/2} [/mm] = [mm] \bruch{x}{(x^2 + 1)^{3/2}} [/mm]

Nun kann ich mit der Krümmungsableitung die Extremalstellen bestimmen. Hier ist die Produkteregel wohl geeignet

Krümmung' = [mm] \bruch{(x^2 + 1)^{3/2} - \bruch{3}{2}x * (x^2 + 1)^{1/2}}{(x^2 + 1)^{9/4}} [/mm]

Nun setze ich das mal Null
0 = [mm] \bruch{(x^2 + 1)^{3/2} - \bruch{3}{2}x * (x^2 + 1)^{1/2}}{(x^2 + 1)^{9/4}} [/mm]
0 = [mm] (x^2 [/mm] + [mm] 1)^{3/2} [/mm] - [mm] \bruch{3}{2}x [/mm] * [mm] (x^2 [/mm] + [mm] 1)^{1/2} [/mm]
0 = [mm] (x^2 [/mm] + [mm] 1)^{1/2} [/mm] * [mm] ((x^2 [/mm] + 1) - [mm] \bruch{3}{2}x) [/mm]
Nun einer der komponenten Null geben
0 = [mm] (x^2 [/mm] + [mm] 1)^{1/2} \to [/mm] Das wird wohl nie NUll
0 = [mm] ((x^2 [/mm] + 1) - [mm] \bruch{3}{2}x) \to [/mm] Diese quadratische Gleichung scheint keien Lösung zu haben

Was mache ich falsch?

Danke, Gruss Kuriger

        
Bezug
Krümmung: Antwort
Status: (Antwort) fertig Status 
Datum: 13:54 Sa 08.01.2011
Autor: MathePower

Hallo Kuriger,

> berechnen Sie die maximale Krümmung der Kurve y = ln(x), x
> > 0
>  
>
> Die allgemeine Krpmmungsformel lautet
>  
> Krümmung  = [mm]\bruch{f''(t)}{(1 + f'(t)^2)^{3/2}}[/mm]
>  
>
> Also:
>  f(x) = ln(x)
>  f'(x) = [mm]\bruch{1}{x}[/mm]
>  f''(x) = [mm]-\bruch{1}{x^2}[/mm]
>  
> Eingesetzt
>  Krümmung =
> [mm]\bruch{-\bruch{1}{x^2}}{(1+(\bruch{1}{x})^2)^{3/2}}[/mm]
>  
> Nun versuche ich das ganze etwas umzuformen
>  
> Krümmung = - [mm]\bruch{\bruch{1}{x}}{(\bruch{x^2 + 1}{x^2})^{3/2}}[/mm]
> = - [mm](\bruch{\bruch{1}{x^{4/3}}}{\bruch{x^2 + 1}{x^2}})^{3/2}[/mm]
> = - [mm](\bruch{x^2}{x^{4/3 * (x^2 + 1)}})^{3/2}[/mm] =
> [mm]\bruch{x}{(x^2 + 1)^{3/2}}[/mm]



[ok]


>  
> Nun kann ich mit der Krümmungsableitung die
> Extremalstellen bestimmen. Hier ist die Produkteregel wohl
> geeignet
>  
> Krümmung' = [mm]\bruch{(x^2 + 1)^{3/2} - \bruch{3}{2}x * (x^2 + 1)^{1/2}}{(x^2 + 1)^{9/4}}[/mm]


Hier haben sich einige Fehler eingeschlichen:

[mm]\bruch{(x^2 + 1)^{3/2} - \bruch{3}{2}x * (x^2 + 1)^{1/2}*\red{\left(x^{2}+1\right)'}}{\blue{\left( \ (x^2 + 1)^{3/2}\right)^{2}}}[/mm]


>  
> Nun setze ich das mal Null
>  0 = [mm]\bruch{(x^2 + 1)^{3/2} - \bruch{3}{2}x * (x^2 + 1)^{1/2}}{(x^2 + 1)^{9/4}}[/mm]
>  
> 0 = [mm](x^2[/mm] + [mm]1)^{3/2}[/mm] - [mm]\bruch{3}{2}x[/mm] * [mm](x^2[/mm] + [mm]1)^{1/2}[/mm]
>  0 = [mm](x^2[/mm] + [mm]1)^{1/2}[/mm] * [mm]((x^2[/mm] + 1) - [mm]\bruch{3}{2}x)[/mm]
>  Nun einer der komponenten Null geben
>  0 = [mm](x^2[/mm] + [mm]1)^{1/2} \to[/mm] Das wird wohl nie NUll
>  0 = [mm]((x^2[/mm] + 1) - [mm]\bruch{3}{2}x) \to[/mm] Diese quadratische
> Gleichung scheint keien Lösung zu haben
>  
> Was mache ich falsch?


Siehe oben.


>  
> Danke, Gruss Kuriger


Gruss
MathePower

Bezug
                
Bezug
Krümmung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:00 So 09.01.2011
Autor: Kuriger

Hallo


Den rote Ausdruck verstehe ich nicht ganz:

> [mm]\bruch{(x^2 + 1)^{3/2} - \bruch{3}{2}x * (x^2 + 1)^{1/2}*\red{\left(x^{2}+1\right)'}}{\blue{\left( \ (x^2 + 1)^{3/2}\right)^{2}}}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)



oder du meinst:
\red{\left(x^{2}+1\right)' = 2x ?

Gruss Kuriger



Bezug
                        
Bezug
Krümmung: Antwort
Status: (Antwort) fertig Status 
Datum: 12:19 So 09.01.2011
Autor: MathePower

Hallo Kuriger,

> Hallo
>  
>
> Den rote Ausdruck verstehe ich nicht ganz:
>  
> > [mm]\bruch{(x^2 + 1)^{3/2} - \bruch{3}{2}x * (x^2 + 1)^{1/2}*\red{\left(x^{2}+1\right)'}}{\blue{\left( \ (x^2 + 1)^{3/2}\right)^{2}}}[/mm]Eingabefehler: "{" und "}" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Eingabefehler:

> "{" und "}" müssen immer paarweise auftreten, es wurde
> aber ein Teil ohne Entsprechung gefunden (siehe rote
> Markierung)
>  
>
>
> oder du meinst:
>  \red{\left(x^{2}+1\right)' = 2x ?


Genau.


>  
> Gruss Kuriger
>  


Gruss
MathePower  

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Exp- und Log-Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]