matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra / VektorrechnungKrümmung verknoteter Kurven
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra / Vektorrechnung" - Krümmung verknoteter Kurven
Krümmung verknoteter Kurven < Lin. Algebra/Vektor < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Krümmung verknoteter Kurven: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 12:51 Do 30.10.2014
Autor: elmanuel

Hallo liebe Gemeinde!

Ich versuche mich gerade daran den Beweis von Fary-Milnors Satz zu verstehen...
[]Beweis-Link (bisschen nach oben scrollen)

der anfang geht ja noch: er argumentiert mit der brückenzahl dass wenn die kurve kleiner ist als 4pi dann muss es einen vektor e geben sodass die geschlossene kurve in richtung e nur ein maximum und ein minimum hat.

dann betrachtet er ebenen die zu e orthogonal sind und erkennt dass diese ebenen in den extrema einen schnittpunkt mit der spur von der kurve haben und genau 2 schnittpunkte zwischen den extrema

dann definiert er eine isotopie [mm] phi_1 [/mm] die anscheinend  "die verbindungslinien auf der e-achse zentriert" ...
hier schon mein erstes verständnisproblem: was macht diese isotopie genau?
alle verbindungslinien sind ja bereits orthogonal zum vektor e, was genau bedeutet das "zentrieren der verbindungslinien auf der e-achse? soll die e-achse die von (0,0,0) ausgehende gerade in richtung e sein?
ausserdem geht mir die abbildungsvorschrift von phi mal gar nicht ein :(

die zweite isotopie [mm] phi_3 [/mm] soll dann die kurve die möglicherweise um die e-achse verdrillt ist entdrillen... ich verstehe dass die matrix eine drehung verursacht aber was der rest der abbildung macht verstehe ich nicht

ich hab mir auch schon ein stückchen draht genommen und versucht die isotopien selbst zu vollziehen, leider hab ich scheinbar aber noch nicht begriffen was  [mm] phi_1 [/mm] und [mm] phi_3 [/mm] genau machen, deswegen ist das auch nicht geglückt...

vielleicht kann mir jemand ein bisschen auf die sprünge helfen :) ?

        
Bezug
Krümmung verknoteter Kurven: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Mo 03.11.2014
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra / Vektorrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]