matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRationale FunktionenKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Rationale Funktionen" - Kurvendiskussion
Kurvendiskussion < Rationale Funktionen < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:43 Do 20.09.2007
Autor: defjam123

Aufgabe
symmetrie,Verhalten;Polstelle,Asymptot
[mm] \bruch{x^{3}}{(x+a)²} [/mm]

Hey leute,

schreib morgen ne klausur, könntet ihr gucken ob das korrekt ist?
Symmertrie

[mm] f(-x)=bruch{-x^{3}}{(-x+a)²}\not=f-(x);f(x) [/mm] daraus folg weder punktsymmertrisch noch achsensymmetrisch

Polstelle

ID=IR/{-a}

Verhalten an der Polstelle:

[mm] x\to [/mm] -a
x>a
a>0
[mm] \bruch{-a³}{+0}=-\infty [/mm]

x/to-a
x<a
a>0
[mm] \bruch{-a³}{+0}=-\infty [/mm]

x/to-a
x>a
a<0
[mm] \bruch{+a³}{+0}=+\infty [/mm]

x/to-a
x<a
a<0
[mm] \bruch{+a³}{+0}=+\infty [/mm]

[mm] \bruch{x^{3}}{(x+a)²} [/mm]

Asymptote

[mm] x^{3}:(x^{2}+xa+a²)=x+\bruch{-xa-a²}{x²+xa+a²} [/mm]

d.h.

a(x)=x

ist das richtig?

        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 21:36 Do 20.09.2007
Autor: Zwerglein

Hi, defjam,

> symmetrie,Verhalten;Polstelle,Asymptot
>  [mm]\bruch{x^{3}}{(x+a)²}[/mm]

>

> schreib morgen ne klausur, könntet ihr gucken ob das
> korrekt ist?

Klaro!

>  Symmetrie
>  
> [mm]f(-x)=bruch{-x^{3}}{(-x+a)²}\not=f-(x);f(x)[/mm] daraus folg
> weder punktsymmertrisch noch achsensymmetrisch

Natürlich nur, wenn a [mm] \not= [/mm] 0. Dann aber OK!

> Polstelle
>  
> ID=IR/{-a}

Musst die Polstelle aber hinschreiben: x = -a  Pol 2. Ordnung!
  

> Verhalten an der Polstelle:
>  
> [mm]x\to[/mm] -a
>  x>a

Vorzeichen! x > -a (weiter hinten auch!)

>  a>0
>  [mm]\bruch{-a³}{+0}=-\infty[/mm]

Komische Schreibweise! Dürft Ihr das so hindingsen?
  

> x/to-a
>  x<a

siehe oben!

>  a>0
>  [mm]\bruch{-a³}{+0}=-\infty[/mm]
>  
> x/to-a
>  x>a

siehe oben!

>  a<0
>  [mm]\bruch{+a³}{+0}=+\infty[/mm]

Wenn a < 0 ist, dann ist auch [mm] a^{3} [/mm] < 0!
Jedoch ist dann [mm] -a^{3} [/mm] > 0.
Das Minuszeichen im Zähler bleibt daher stehen; Ergebnis jedoch richtig!
  

> x/to-a
>  x<a

siehe oben!

>  a<0
>  [mm]\bruch{+a³}{+0}=+\infty[/mm]

siehe oben: [mm] -a^{3} [/mm] im Zähler!
  

> [mm]\bruch{x^{3}}{(x+a)²}[/mm]
>  
> Asymptote
>  
> [mm]x^{3}:(x^{2}+xa+a²)=x+\bruch{-xa-a²}{x²+xa+a²}[/mm]

binomische Formel: (x + [mm] a)^{2} [/mm] = [mm] (x^{2} [/mm] + [mm] \red{2}ax [/mm] + [mm] a^{2}) [/mm]

Daher falsche Asymptote!

mfG!
Zwerglein

Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:58 Do 20.09.2007
Autor: defjam123

was wäre denn das richtige ergebnis der asymptote?

Bezug
                        
Bezug
Kurvendiskussion: Asymptote
Status: (Antwort) fertig Status 
Datum: 22:42 Do 20.09.2007
Autor: Mato

Meiner Rechnung nach müsste die Asymptote lauten:
a(x)=x-2a wegen [mm] x^{3}:(x+a)^{2}=x-2a+\bruch{3xa^{2}+2a^{3}}{(x+a)^{2}} [/mm]
Auf deine Schreibweise musst du natürlich auch achten, was den Limes angeht. Denn als Nenner kannst du nicht einfach eine Null haben, wenn du z.b. [mm] \bruch{-a^{3}}{+0}=-\infty [/mm] hast. Sonst gibt es ja Punktabzüge.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Rationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]