matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGanzrationale FunktionenKurvendiskussion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Ganzrationale Funktionen" - Kurvendiskussion
Kurvendiskussion < Ganzrationale Fktn < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvendiskussion: bitte korregierenWendestellen?
Status: (Frage) beantwortet Status 
Datum: 15:48 So 08.11.2009
Autor: JohnGrisham

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Aufgabe ist es bei diesem Typ von Funktion eine Kurvendiskussion
durchzuführen :
f(x) = -1/8 (x-4)² (x+2)
Folgende Pkt sind von Bedeutung:
-Symmetrie
-Nullstellen
-Extremwertstellen
-Wendestellen

-Symmetrie
-AS f(x) = f(-x)
-1/8(x-4)²(x+2)=-1/8 (-x-4)²(-x+2)
=keine AS weil ungleich

PS?
f(-x) =-f(x)
-1/8(-x-4)²(-x+2)=-(-1/8(x-4)²(x+2))
=keine PS weil ungleich

2.Nullstellen
Auflösen der Klammer
-1/8(x-4)²(x+2)=0
x=4       X=-2

3.Extemstellen
notwendige bedingung f´(x) =0

=-1/8 (x-4) (x-4) (x+2)
=-1/8 x²-4x-8x+16 (x+2)
f'(x) = -3/8x²+0,5x
-3/8x²+0,5x+0=0         :-3/8
pq
x²-1,33x+0 =0
x(-3/8x+0,5)=0
0,5 =3/8x               /0,5
x1=0    x2=0,75

-wendestellen
bitte helfen bitte




        
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 15:58 So 08.11.2009
Autor: Unk

Hallo,

> durchzuführen :
>  f(x) = -1/8 (x-4)² (x+2)
>  Folgende Pkt sind von Bedeutung:
>  -Symmetrie
>  -Nullstellen
>  -Extremwertstellen
>  -Wendestellen
>  
> -Symmetrie
>  -AS f(x) = f(-x)
>  -1/8(x-4)²(x+2)=-1/8 (-x-4)²(-x+2)
>  =keine AS weil ungleich
>  
> PS?
>  f(-x) =-f(x)
>  -1/8(-x-4)²(-x+2)=-(-1/8(x-4)²(x+2))
>  =keine PS weil ungleich
>  
> 2.Nullstellen
>  Auflösen der Klammer
>  -1/8(x-4)²(x+2)=0
>  x=4       X=-2
>  

Ich stimme dir soweit zu.

> 3.Extemstellen
> notwendige bedingung f´(x) =0
>  
> =-1/8 (x-4) (x-4) (x+2)
>  =-1/8 x²-4x-8x+16 (x+2)
>  f'(x) = -3/8x²+0,5x
>  -3/8x²+0,5x+0=0         :-3/8
>  pq
>  x²-1,33x+0 =0
>  x(-3/8x+0,5)=0
>  0,5 =3/8x               /0,5
>  x1=0    x2=0,75
>  

Ich hab die Ableitung ehrlich gesagt nicht nachgerechnet. Für Extremstellen gibt es dann aber auch noch die hinreichende Bedingung, die du noch überprüfen musst!

> -wendestellen
>  bitte helfen bitte

Was sind denn hier notwendige und hinreichende Bedingung?

>  
>
>  

Gruß Unk

Bezug
                
Bezug
Kurvendiskussion: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:05 So 08.11.2009
Autor: JohnGrisham

Hallo danke für die Antwort
Bitte helf mir mit den Wendestellen
kannst mir das bitte ausrechnen wäre sehr nett verstehe das damit nicht
ist doch was mit der zweiten Ableitung gl 0 setzen?

Bezug
                        
Bezug
Kurvendiskussion: Wendestellen
Status: (Antwort) fertig Status 
Datum: 18:06 So 08.11.2009
Autor: troublemaker92

Bei den Wendestellen ist es ähnlich wie bei den Extremstellen, nur das du eine Ableitung weiter gehen musst;
Sprich die Nullstellen der 2. Ableitung berechnen (notwendiges Kriterium) und anschließend die Nullstellen in die 3. Ableitung einsetzen, die dann [mm] \not= [/mm] 0 sein muss (hinreichendes Kriterium).
Das mit dem hinreichendem Kriterium gilt ja auch bei den Extremstellen: Entweder muss die 2. Ableitung [mm] \not= [/mm] 0 sein oder es muss ein Vorzeichenwechsel vorliegen.
LG

Bezug
        
Bezug
Kurvendiskussion: HILFE gebraucht Wendestellen
Status: (Frage) beantwortet Status 
Datum: 18:18 So 08.11.2009
Autor: JohnGrisham

Ist einer von Euch so lieb und wendet jetzt diese Berechnung der Wendestellen auf meine Aufg an ..
Bitte!

Bezug
                
Bezug
Kurvendiskussion: Antwort
Status: (Antwort) fertig Status 
Datum: 18:32 So 08.11.2009
Autor: Steffi21

Hallo, zunächst ist die 2. Ableitung notwendig, ich habe die Produktregel benutzt

[mm] f(x)=-\bruch{1}{8}*(x-4)^{2}*(x+2) [/mm]

[mm] f'(x)=-\bruch{1}{4}*(x-4)*(x+2)-\bruch{1}{8}*(x-4)^{2} [/mm]

[mm] f''(x)=-\bruch{1}{4}*(x-4)-\bruch{1}{4}*(x+2)-\bruch{1}{4}*(x-4) [/mm]

[mm] f''(x)=-\bruch{1}{2}*(x-4)-\bruch{1}{4}*(x+2) [/mm]

[mm] f''(x)=-\bruch{3}{4}x+\bruch{3}{2} [/mm]

[mm] 0=-\bruch{3}{4}x+\bruch{3}{2} [/mm]

Steffi

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Ganzrationale Funktionen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]