matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrieren und DifferenzierenKurvenintegral
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Integrieren und Differenzieren" - Kurvenintegral
Kurvenintegral < Integr.+Differenz. < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:21 Do 14.06.2012
Autor: lzaman

Aufgabe
Kurvenintegral für die Kurve

[mm]\integral_{\varphi}{ 2x \ ds}[/mm]

mit der Parameterdarstellung

[mm]\varphi(t)=\vektor{3t \\ t^2}, \; 0\leq t\leq 2[/mm]

berechnen







Hallo, versuche gerade das Thema der Kurvenintegrale zu bearbeiten.

Jetz kann ich ja erstmal die Ableitungen bilden und evtl. den Betrag von [mm]\varphi '(t)[/mm] :

[mm]\varphi '(t)=\vektor{3 \\ 2t}[/mm]

[mm]\left|\varphi ' (t)\right|=\sqrt{3^2+(2t)^2}=\sqrt{9+4t^2}[/mm]

So jetzt habe ich alles um weiter zu rechnen.

Ein Kurvenintegral 1. Art gilt für Abbildungen von [mm] \IR^n [/mm] nach [mm] \IR [/mm] und das Kurvenintegral 2. Art für Abbildungen von [mm] \IR^n [/mm] nach [mm] \IR^n. [/mm] Jetzt sehe ich aber noch nicht, welche Abbildungen hier vorliegen. Bitte um Hilfe...

Oder gibt mir das Differential $ds$ also reell, Auskunft darüber?

Danke  




        
Bezug
Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 06:06 Fr 15.06.2012
Autor: fred97

In obiger Aufgabe ist f(x,y)=2x, also handelt es sich um ein Integral 1. Art.

FRED

Bezug
                
Bezug
Kurvenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:42 Mo 18.06.2012
Autor: lzaman

Vielen Dank für die Antwort. Jetzt komme ich aber nicht weiter, es gilt dann bei Kurvenintegralen erster Art:

[mm]\integral_{C}2x \ ds=\integral_{0}^{2}6t\cdot \sqrt{9+4t^2} \ dt=?[/mm]

Wie kann ich jetzt am besten integrieren (Substitution oder partielle Integration) ? Über Wurzeln integrieren ist nicht so meins, muss das noch mehr üben...



Bezug
                        
Bezug
Kurvenintegral: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:09 Mo 18.06.2012
Autor: lzaman

Also, mit Substitution [mm] $u=4t^2+9$ [/mm] und $(du=8x \ dx)$ komme ich auf

[mm] $\dfrac{1}{2}\left(4t^2+9\right)^{\dfrac{3}{2}}$ [/mm]

und das Ergebnis ist 49.

Jetzt möchte ich gerne wissen, ob das alles so richtig ist, was ich gemacht habe. Ist denn wirklich f(x,y) parametrisiert 6t und das Ergebnis so richtig?

Danke


Bezug
                                
Bezug
Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:54 Mo 18.06.2012
Autor: meili

Hallo,
> Also, mit Substitution [mm]u=4t^2+9[/mm] und [mm](du=8x \ dx)[/mm] komme ich

[mm](du=8t \ dt)[/mm]

> auf
>
> [mm]\dfrac{1}{2}\left(4t^2+9\right)^{\dfrac{3}{2}}[/mm]

[ok]

>  und das Ergebnis ist 49.

[ok]

>  
> Jetzt möchte ich gerne wissen, ob das alles so richtig
> ist, was ich gemacht habe. Ist denn wirklich f(x,y)
> parametrisiert 6t und das Ergebnis so richtig?

Ja, [mm] $f(\varphi(t)) [/mm] = f(3t, [mm] t^2) [/mm] = 2*3t = 6t$.

>  
> Danke
>  

Gruß
meili

Bezug
                        
Bezug
Kurvenintegral: Antwort
Status: (Antwort) fertig Status 
Datum: 21:59 Mo 18.06.2012
Autor: meili

Hallo,
> Vielen Dank für die Antwort. Jetzt komme ich aber nicht
> weiter, es gilt dann bei Kurvenintegralen erster Art:
>  
> [mm]\integral_{C}2x \ ds=\integral_{0}^{2}6t\cdot \sqrt{9+4t^2} \ dt=?[/mm]

[ok]

>  
> Wie kann ich jetzt am besten integrieren (Substitution oder
> partielle Integration) ? Über Wurzeln integrieren ist
> nicht so meins, muss das noch mehr üben...

Wie unten mit Substitution gehts.

>  
>  

Gruß
meili

Bezug
        
Bezug
Kurvenintegral: Danke
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 22:42 Mo 18.06.2012
Autor: lzaman

Vielen Dank für das Prüfen, die Aufgabe ist durch und verstanden...


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrieren und Differenzieren"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]