matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungKurvenschar
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Differenzialrechnung" - Kurvenschar
Kurvenschar < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Kurvenschar: Tipp
Status: (Frage) beantwortet Status 
Datum: 00:07 Mi 07.06.2006
Autor: Teufel

Aufgabe
  [mm] f_{t}(x)=x³-3t²x [/mm] ; t [mm] \ge0 [/mm]

...
c) Für welchen Wert von t liegen die Extrempunkte auf der 2. Winkelhalbierenden?

Hiho Leute.

Ich habe die Aufgabe schon gelöst, aber meine Lehrerin hat gesagt, dass ich mir das zu kompliziert gemacht habe.

Die 2. Winkelhalbierende ist natürlich y=-x.
Dann habe ich die Ortskurve der Extrempunkte bestimmt (y=-2x³) und mit y=-x gleichgesetzt (-x=-2x³).
Vorher habe ich schon rausbekommen, dass x=t (weil die Extrempunkte für positive x-Werte bei E(t|-2t³) liegen) gilt und für x t eingesetzt (-t=-2t³), und nach einiger Umstellerei bin ich auf t=0  [mm] \wedge [/mm] t= [mm] \pm \wurzel{ \bruch{1}{2}}, [/mm] wobei man [mm] -\wurzel{ \bruch{1}{2}} [/mm] vernachlässigen kann, da t [mm] \ge0 [/mm] gelten muss.

So viel zu meiner Lösung.

Und ich wollte fragen, wie man das ganz einfach lösen könnte!
Vielen Dank.

        
Bezug
Kurvenschar: Antwort
Status: (Antwort) fertig Status 
Datum: 01:09 Mi 07.06.2006
Autor: leduart

Hallo Teufel
>  [mm]f_{t}(x)=x³-3t²x[/mm] ; t [mm]\ge0[/mm]
>  
> ...
>  c) Für welchen Wert von t liegen die Extrempunkte auf der
> 2. Winkelhalbierenden?
>  

> Die 2. Winkelhalbierende ist natürlich y=-x.
>  Dann habe ich die Ortskurve der Extrempunkte bestimmt
> (y=-2x³) und mit y=-x gleichgesetzt (-x=-2x³).

unnötig aber richtig

> Vorher habe ich schon rausbekommen, dass x=t (weil die
> Extrempunkte für positive x-Werte bei E(t|-2t³) liegen)

sobald du das wusstest, konntest du doch die t-Werte sucen so dass x=t,y=-t
also [mm] -t=t^{3}-3t^{3} [/mm]
Und damit auch deine Lösung.
(t=0 ist keine, weil da kein Extremwert, sondern Wendepkt mit waagerechter Tangente)
Ist das einfacher? Aber besser ein SELBSTÄNDIGER richtiger Weg als immer der einfachste!
Gruss leduart


Bezug
        
Bezug
Kurvenschar: kleine "Spitzfindigkeit"
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:45 Mi 07.06.2006
Autor: ardik

Hallo Teufel,

eine kleine "Spitzfindigkeit":

> [mm]t=0 \wedge t= \pm \wurzel{ \bruch{1}{2}}[/mm]

Dazwischen gehört natürlich ein "oder" [mm] $\vee$ [/mm] ...

Ansonsten finde ich: gut gedacht, auch wenn's eigentlich zu kompliziert war!
Da stimme ich leduart voll zu!

Schöne Grüße,
ardik


Bezug
                
Bezug
Kurvenschar: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:28 Mi 07.06.2006
Autor: Teufel

Super, danke Leute :)

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]