matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPhysikLadungsdichteverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Physik" - Ladungsdichteverteilung
Ladungsdichteverteilung < Physik < Naturwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Ladungsdichteverteilung: Tipp
Status: (Frage) beantwortet Status 
Datum: 22:33 Mo 09.05.2011
Autor: escarflowne

Aufgabe
Gegeben sei ein nichtleitender Würfel mit Kantenlänge a, dessen eine Ecke sich im Ursprung befindet. Die drei anliegenden Kanten zeigen in die positive x-,y-, und z Richtung. Der Würfel bestitz eine Ladungsverteilung von p(x,y,z)= p0 * [mm] (2x^2 [/mm] + 4xy - 8xz).
Berechnen sie die Gesamtladung des Würfels durch Integration über das Würfelvolumen.

Ich weiß jetzt nicht genau, wie ich das Integral machen soll, weil ich ja drei variablen habe. Ich weiß schon, dass man mit Q= int p dV     was macht und dann nach dQ = p0* [mm] (2x^2 [/mm] + 4xy - 8xz) dV
umstellt, aber ich komm nicht weiter.
LG

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Ladungsdichteverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 23:13 Mo 09.05.2011
Autor: chrisno

Das kannst Du direkt integrieren: $Q = [mm] \int \rho [/mm] dV = [mm] \int\int\int \rho(x,y,z) [/mm] dx dy dz$
Die Grenzen sind klar, [mm] $\rho(x,y,z)$ [/mm] musst Du nur einsetzen und dann hast Du die freie Wahl, in welcher Reihenfolge Du nach x, y und z integrierst.

Bezug
                
Bezug
Ladungsdichteverteilung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:51 Mo 09.05.2011
Autor: escarflowne

Achso ok dank schon mal,  aber für welche variable setze ich dann mein [mm] a^3 [/mm] ein? Weil ich hab zum schluß dann immer noch x drin genauso wie y und z. Müsste sich das eigentlich dann rauskürzen? Ich wollte ja auf eine Formel mit nur noch a drin kommen.

Bezug
                        
Bezug
Ladungsdichteverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:42 Di 10.05.2011
Autor: reverend

Hallo escarflowne,

Dein Dreifachintegral ist ja ein bestimmtes Integral. Am Ende bleibt also weder x noch y noch z übrig. Du musst halt die Grenzen richtig setzen, so dass Du über den ganzen Würfel integrierst. Bei einem Würfel in dieser Lage ist das glücklicherweise sehr einfach. ;-)
Leitfrage: welchen Bereich deckt x ab? Welchen y? ...

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Physik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]