matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-NumerikLandau-Symbole
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Numerik" - Landau-Symbole
Landau-Symbole < Numerik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Landau-Symbole: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 10:28 Fr 19.07.2013
Autor: algieba

Aufgabe
Man schreibe die folgenden Ausdrücke in der Form $f(h) = [mm] O(h^p)$, [/mm] für $h [mm] \searrow [/mm] 0$ mit möglichst großem $p [mm] \in \IN$, [/mm] bzw. $g(n) = [mm] O(n^q)$ [/mm] für $n [mm] \nearrow \infty$ [/mm] mit möglichst kleinem [mm] $q\in\IN$: [/mm]

a) $f(h) = [mm] 4(h^2+h)^2-4h^4$ [/mm]

b) $g(n) = [mm] 4(n^2+n)^2-4n^4$ [/mm]

...


Hallo

Ich habe solch eine Aufgabe noch nie gelöst, kann mir da jemand einen Tipp geben?
Ich kann den Ausdruck umformen zu $f(h) = [mm] 8h^3+4h^2$ [/mm]

Die Definition lautet:
$f(h) = [mm] O(h^p)$ [/mm]
[mm] $\Leftrightarrow$ [/mm] für kleine [mm] $h\in [/mm] (0, [mm] h_0]$ [/mm] mit einer Konstanten $c [mm] \leq [/mm] 0$ gilt: $|f(h)| [mm] \leq [/mm] c [mm] |h^p|$ [/mm]

Was ist überhaupt die Aufgabe? Muss ich das $c$ finden? Oder das $p$?

Vielen Dank

EDIT: Schreibfehler entfernt


        
Bezug
Landau-Symbole: Antwort
Status: (Antwort) fertig Status 
Datum: 11:00 Fr 19.07.2013
Autor: fred97


> Man schreibe die folgenden Ausdrücke in der Form [mm]f(h) = O(h^p)[/mm],
> für [mm]h \searrow 0[/mm] mit möglichst großem [mm]p \in \IN[/mm], bzw.
> [mm]g(n) = O(n^q)[/mm] für [mm]n \nearrow \infty[/mm] mit möglichst kleinem
> [mm]q\in\IN[/mm]:
>  
> a) [mm]f(h) = 4(h^2+h)^2-4h^4[/mm]
>  
> b) [mm]g(n) = 4(n^2+n)^2-4n^4[/mm]
>
> ...
>  
> Hallo
>  
> Ich habe solch eine Aufgabe noch nie gelöst, kann mir da
> jemand einen Tipp geben?
>  Ich kann den Ausdruck umformen zu [mm]f(h) = 8h^3+4h^2[/mm]
>  
> Die Definition lautet:
> [mm]f(h) = O(h^p)[/mm]
>  [mm]\Leftrightarrow[/mm] für kleine [mm]h\in (0, h_0][/mm]
> mit einer Konstanten [mm]c \leq 0[/mm] gilt: [mm]|f(h)| \leq c |h^p|[/mm]

Du meinst sicher c [mm] \ge [/mm] 0.

>  
> Was ist überhaupt die Aufgabe? Muss ich das [mm]c[/mm] finden? Oder
> das [mm]p[/mm]?

Ich übersetze mal:

$ f(h) = [mm] O(h^p) [/mm] $, für $ h [mm] \searrow [/mm] 0 $ bedeutet: es gibt ein [mm] h_0>0 [/mm] so, dass der Quotient

     [mm] Q(h):=\bruch{f(h)}{h^p} [/mm]  für h [mm] \in (0,h_0] [/mm]

beschränkt ist.

Zu a) Nach Ausmultiplizieren ist

    [mm] f(h)=8h^3+4h^2, [/mm]

also

    [mm] Q(h)=\bruch{8h^3+4h^2}{h^p}. [/mm]

Nun orgeln wir das mal durch:

p=1: Dann ist [mm] Q(h)=8h^2+4h. [/mm] Prima ! Das bleibt in der Nähe von 0 beschränkt.

p=2: Dann ist Q(h)=8h+4. Wieder prima ! Das bleibt in der Nähe von 0 beschränkt.

p=3: Dann ist [mm] Q(h)=8+\bruch{4}{h}. [/mm] Bäääh ! Q(h) [mm] \to \infty [/mm] für  $ h [mm] \searrow [/mm] 0 $

p=4: Dann ist [mm] Q(h)=\bruch{8}{h}+\bruch{4}{h^2}. [/mm] Wieder bäääh ! Q(h) [mm] \to \infty [/mm] für  $ h [mm] \searrow [/mm] 0 $

.
.
.
.
.
.
.

Was ist also das größtmögliche p, so das  $ f(h) = [mm] O(h^p) [/mm] $, für $ h [mm] \searrow [/mm] 0 $  gilt ?

FRED


>  
> Vielen Dank
>  
> EDIT: Schreibfehler entfernt
>  


Bezug
                
Bezug
Landau-Symbole: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 17:10 Di 23.07.2013
Autor: algieba

Aufgabe
Man schreibe die folgenden Ausdrücke in der Form [mm]f(h) = O(h^p)[/mm], für [mm]h \searrow 0[/mm] mit möglichst großem [mm]p \in \IN[/mm], bzw. [mm]g(n) = O(n^q)[/mm] für [mm]n \nearrow \infty[/mm] mit möglichst kleinem [mm]q\in\IN[/mm]:

a) [mm]f(h) = 4(h^2+h)^2-4h^4[/mm]

b) [mm]g(n) = 4(n^2+n)^2-4n^4[/mm]

c) [mm]f(h) = \bruch{e^h-e^{-h}}{2h}-1[/mm]

d) $g(n) = [mm] \sup_{x>0} \bruch{1-e^{-nx}}{1-e^{-x}}$ [/mm]

Hallo

> Was ist also das größtmögliche p, so das  [mm]f(h) = O(h^p) [/mm],
> für [mm]h \searrow 0[/mm]  gilt ?

Das ist dann natürlich $p=2$. Also gilt $f(h) = [mm] O(n^2) [/mm]

Ich habe oben noch einmal die anderen Aufgaben geschrieben. Die Aufgabe a haben wir gerade gelöst.
Bei b) habe ich raus: $g(n) = [mm] O(n^3)$ [/mm]
Bei c) habe ich raus: $f(h) = O(h)$
Sollte eigentlich stimmen.

Jetzt hänge ich aber bei der Aufgabe d):
Ich habe mir überlegt, dass es eigentlich problemlos möglich sein müsste das Polynom [mm] $n^q$ [/mm] in das Supremum reinzuziehen. In Formeln:

$Q(n) = [mm] \bruch{\sup_{x>0} \bruch{1-e^{-nx}}{1-e^{-x}}}{n^q} [/mm]  =  [mm] \sup_{x>0} \bruch{1-e^{-nx}}{n^q(1-e^{-x})}$ [/mm]

Ist das schon mal richtig? Und wie komme ich dann weiter?

Vielen Dank für die Hilfe

Bezug
                        
Bezug
Landau-Symbole: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 01:58 Mi 31.07.2013
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Numerik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]