matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenPartielle DifferentialgleichungenLaplace-Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Partielle Differentialgleichungen" - Laplace-Gleichung
Laplace-Gleichung < partielle < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace-Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:06 Sa 12.12.2009
Autor: GreatBritain

Aufgabe
Use separation of variables $u(x,y) = P(x)Q(y)$ to solve the [mm] \textit{anisotropic 2D Laplace Equation} [/mm] for $u(x,y)$
[mm] $$\frac{\partial^2u}{\partial x^2} [/mm] + [mm] \alpha^2 \frac{\partial^2 u}{\partial y^2} [/mm] = 0$$
on the region $0 < x < 1$ and $0 < y < 1$, assuming [mm] $\alpha [/mm] > 0$ is constant and subject to $u=0$ on all boundaries except for $u(x,1) = [mm] \sin(4\pi [/mm] x)$  

hi
ich habe mich jetzt mit der Aufgabe beschäftigt und würde gerne wissen, ob das, was ich bisher gemacht habe, überhaupt stimmt.


[mm] $$\frac{\partial^2u}{\partial x^2} [/mm] + [mm] \alpha^2 \frac{\partial^2 u}{\partial y^2} [/mm] = 0$$
[mm] $\Rightarrow [/mm] P''(x)Q(y) = [mm] -\alpha^2 \cdot P(x)Q''(y)$\\ [/mm]
[mm] $\Leftrightarrow \frac{P''(x)}{P(x)} [/mm] = [mm] -\alpha^2 \frac{Q''(y)}{Q(y)} [/mm] = [mm] -\alpha^2 \cdot k^2$ [/mm]

[mm] $\frac{P''(x)}{P(x)} [/mm] = [mm] -\alpha^2k^2 \Rightarrow [/mm] P'' + [mm] (\alpha^2k^2)P [/mm] = 0$

Auxiliary [mm] Equation:\\ [/mm]
[mm] $m^2 [/mm] + [mm] \alpha^2k^2 [/mm] = 0 [mm] \Rightarrow m^2 [/mm] = [mm] i^2 \alpha^2 k^2 \Rightarrow [/mm] m = [mm] \pm i\alpha [/mm] k$
$$P(x) = [mm] A\cos(\alpha [/mm] kx) + [mm] B\sin(\alpha [/mm] kx)$$

[mm] $\frac{Q''(y)}{Q(y)} [/mm] = [mm] k^2 \Rightarrow [/mm] Q'' - k^2Q = 0$

Auxiliary [mm] Equation:\\ [/mm]
[mm] $m^2 [/mm] - [mm] k^2 [/mm] = 0 [mm] \Rightarrow [/mm] (m+k)(m-k) = 0 [mm] \Rightarrow [/mm] m = [mm] \pm [/mm] k$
$$Q(y) = [mm] C\cosh(ky) [/mm] + [mm] D\sinh(ky)$$ [/mm]

Apply Boundary Conditions:

$u(0,y) = u(1,y) = 0 [mm] \Rightarrow [/mm] P(0) = P(1) = [mm] 0$\\ [/mm]
$P(0) = A [mm] \cdot [/mm] 1 + B [mm] \cdot [/mm] 0 = A [mm] \Rightarrow [/mm] A = [mm] 0$\\ [/mm]
$P(1) = [mm] B\sin(\alpha [/mm] k) = 0 [mm] \Rightarrow \sin(\alpha [/mm] k) = 0 [mm] \Rightarrow [/mm] k = [mm] \frac{n \pi}{\alpha}, [/mm] n [mm] \in \mathbb{N}$ [/mm]
[mm] $$\Rightarrow [/mm] u(x, y) = P(x)Q(y) = [mm] (C\cosh(ky) [/mm] + [mm] D\sinh(ky)) \cdot \sin(\frac{n \pi x}{\alpha})$$ [/mm]

$u(x, 0) = [mm] 0$\\ [/mm]
$Q(0) = C [mm] \cdot [/mm] 1 + D [mm] \cdot [/mm] 0 = C [mm] \Rightarrow [/mm] C = 0$
[mm] $$\Rightarrow [/mm] u(x, y) = P(x)Q(y) = [mm] D\sinh(\frac{n \pi y}{\alpha}) \cdot \sin(\frac{n \pi x}{\alpha})$$ [/mm]


wie gesagt, mir geht es nur darum, ob das bis hierhin richtig ist - theoretisch weiß ich wies weitergeht, benötige also keine weiteren Tipps sondern "nur" eine Korrektur meiner bisherigen Rechnung.

Vielen Dank :-)
Gruß GB



        
Bezug
Laplace-Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 18:47 Sa 12.12.2009
Autor: MathePower

Hallo GreatBritain,

> Use separation of variables [mm]u(x,y) = P(x)Q(y)[/mm] to solve the
> [mm]\textit{anisotropic 2D Laplace Equation}[/mm] for [mm]u(x,y)[/mm]
> [mm]\frac{\partial^2u}{\partial x^2} + \alpha^2 \frac{\partial^2 u}{\partial y^2} = 0[/mm]
>  
> on the region [mm]0 < x < 1[/mm] and [mm]0 < y < 1[/mm], assuming [mm]\alpha > 0[/mm]
> is constant and subject to [mm]u=0[/mm] on all boundaries except for
> [mm]u(x,1) = \sin(4\pi x)[/mm]
> hi
>  ich habe mich jetzt mit der Aufgabe beschäftigt und
> würde gerne wissen, ob das, was ich bisher gemacht habe,
> überhaupt stimmt.
>
>
> [mm]\frac{\partial^2u}{\partial x^2} + \alpha^2 \frac{\partial^2 u}{\partial y^2} = 0[/mm]
>  
> [mm]\Rightarrow P''(x)Q(y) = -\alpha^2 \cdot P(x)Q''(y)[/mm][mm] \\[/mm]
>  
> [mm]\Leftrightarrow \frac{P''(x)}{P(x)} = -\alpha^2 \frac{Q''(y)}{Q(y)} = -\alpha^2 \cdot k^2[/mm]
>  
> [mm]\frac{P''(x)}{P(x)} = -\alpha^2k^2 \Rightarrow P'' + (\alpha^2k^2)P = 0[/mm]
>  
> Auxiliary [mm]Equation:\\[/mm]
>  [mm]m^2 + \alpha^2k^2 = 0 \Rightarrow m^2 = i^2 \alpha^2 k^2 \Rightarrow m = \pm i\alpha k[/mm]
>  
> [mm]P(x) = A\cos(\alpha kx) + B\sin(\alpha kx)[/mm]
>  
> [mm]\frac{Q''(y)}{Q(y)} = k^2 \Rightarrow Q'' - k^2Q = 0[/mm]
>  
> Auxiliary [mm]Equation:\\[/mm]
>  [mm]m^2 - k^2 = 0 \Rightarrow (m+k)(m-k) = 0 \Rightarrow m = \pm k[/mm]
>  
> [mm]Q(y) = C\cosh(ky) + D\sinh(ky)[/mm]
>  
> Apply Boundary Conditions:
>  
> [mm]u(0,y) = u(1,y) = 0 \Rightarrow P(0) = P(1) = 0[/mm][mm] \\[/mm]
>  [mm]P(0) = A \cdot 1 + B \cdot 0 = A \Rightarrow A = 0[/mm][mm] \\[/mm]
>  
> [mm]P(1) = B\sin(\alpha k) = 0 \Rightarrow \sin(\alpha k) = 0 \Rightarrow k = \frac{n \pi}{\alpha}, n \in \mathbb{N}[/mm]
>  
> [mm]\Rightarrow u(x, y) = P(x)Q(y) = (C\cosh(ky) + D\sinh(ky)) \cdot \sin(\frac{n \pi x}{\alpha})[/mm]
>  
>  


Hier muß es heißen:

[mm]\Rightarrow u(x, y) = P(x)Q(y) = (C\cosh(ky) + D\sinh(ky)) \cdot \sin(\red{n \pi} x)[/mm]


> [mm]u(x, 0) = 0[/mm][mm] \\[/mm]
>   [mm]Q(0) = C \cdot 1 + D \cdot 0 = C \Rightarrow C = 0[/mm]
>  
>  [mm]\Rightarrow u(x, y) = P(x)Q(y) = D\sinh(\frac{n \pi y}{\alpha}) \cdot \sin(\frac{n \pi x}{\alpha})[/mm]
>  


Hier analog:

[mm]\Rightarrow u(x, y) = P(x)Q(y) = D\sinh(\frac{n \pi y}{\alpha}) \cdot \sin(n \pi x)[/mm]


>
> wie gesagt, mir geht es nur darum, ob das bis hierhin
> richtig ist - theoretisch weiß ich wies weitergeht,
> benötige also keine weiteren Tipps sondern "nur" eine
> Korrektur meiner bisherigen Rechnung.
>  
> Vielen Dank :-)
>  Gruß GB
>  
>  


Gruss
MathePower

Bezug
                
Bezug
Laplace-Gleichung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:41 Sa 12.12.2009
Autor: GreatBritain

ah ja, natürlich - super, vielen Dank!!! da hätte ich noch so oft drüber schauen können, das wäre mir nicht aufgefallen. aber klar, wenn ichs einsetze, kürzt sich das [mm] $\alpha$ [/mm] raus :-)
Gruß GB

Bezug
                
Bezug
Laplace-Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:38 Sa 12.12.2009
Autor: GreatBritain

ok, also mit Mathepower's Verbesserung weiter im Programm:
Find $D$ such that
$$u(x,y) = [mm] \sum_{n=1}^\infty [/mm] D [mm] \cdot \sinh(\frac{n \pi y}{\alpha}) \cdot \sin(n \pi [/mm] x)$$
satisfies $u(x,1) = f(x) = [mm] \sin(4 \pi [/mm] x)$

[mm] $$\Rightarrow [/mm] u(x,1) = [mm] \sum_{n=1}^\infty \underbrace{D \cdot \sinh ( \frac{n \pi}{\alpha})}_{= d_n} \cdot \sin(n \pi [/mm] x) = [mm] \sin(4 \pi [/mm] x)$$

using $f(x) = [mm] \sin(4 \pi [/mm] x)$ as a Fourier Series:

$$f(x) &= [mm] \sum_{n=1}^\infty d_n \cdot \sin(n \pi k)~\text{with}~d_n [/mm] = D [mm] \cdot \sinh [/mm] ( [mm] \frac{n \pi}{\alpha}) [/mm] = [mm] \frac{2}{1} \int_0^1 [/mm] f(x) [mm] \cdot \sin(\frac{n \pi x}{1})= [/mm] 2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx$$

Ist das bis hierhin richtig? Dann müsste ich jetzt doch noch [mm] $d_n$ [/mm] berechnen, was mit Hilfe Partieller Integration funktionieren sollte.

Danke & Gruß, GB

Bezug
                        
Bezug
Laplace-Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:58 Sa 12.12.2009
Autor: MathePower

Hallo GreatBritain,

> ok, also mit Mathepower's Verbesserung weiter im Programm:
>   Find [mm]D[/mm] such that
> [mm]u(x,y) = \sum_{n=1}^\infty D \cdot \sinh(\frac{n \pi y}{\alpha}) \cdot \sin(n \pi x)[/mm]
> satisfies [mm]u(x,1) = f(x) = \sin(4 \pi x)[/mm]
>  
> [mm]\Rightarrow u(x,1) = \sum_{n=1}^\infty \underbrace{D \cdot \sinh ( \frac{n \pi}{\alpha})}_{= d_n} \cdot \sin(n \pi x) = \sin(4 \pi x)[/mm]
>  
> using [mm]f(x) = \sin(4 \pi x)[/mm] as a Fourier Series:
>  
> [mm]f(x) &= \sum_{n=1}^\infty d_n \cdot \sin(n \pi k)~\text{with}~d_n = D \cdot \sinh ( \frac{n \pi}{\alpha}) = \frac{2}{1} \int_0^1 f(x) \cdot \sin(\frac{n \pi x}{1})= 2 \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x) ~dx[/mm]
>  
> Ist das bis hierhin richtig? Dann müsste ich jetzt doch
> noch [mm]d_n[/mm] berechnen, was mit Hilfe Partieller Integration
> funktionieren sollte.


Ja, das ist bis hierhin richtig.


>  
> Danke & Gruß, GB


Gruss
MathePower

Bezug
                        
Bezug
Laplace-Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:20 So 13.12.2009
Autor: GreatBritain

Bei der partiellen Integration bekomme ich raus, dass das Integral =0 ist - was vermutlich keinen Sinn macht...?

[mm] $\Rightarrow$ [/mm] Calculating $2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx$ (Integration by Parts):

$u = [mm] \sin(4 \pi [/mm] x) [mm] \Rightarrow [/mm] u' = [mm] \sin(4 \pi [/mm] x) [mm] \cdot [/mm] 4 [mm] \pi; \quad v=-\frac{1}{n\pi}\cdot \cos(n \pi [/mm] x) [mm] \Rightarrow [/mm] v' = [mm] \sin(n \pi [/mm] x)$
$$2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx = [mm] -\frac{1}{n\pi} \underbrace{\Big[\cos(n \pi x) \cdot \sin(4 \pi x)\Big]_0^1}_{=0} [/mm] + [mm] \frac{4}{n} \int_0^1 \cos(4 \pi [/mm] x) [mm] \cdot \cos(n \pi [/mm] x)~dx $$

$w = [mm] \cos(4 \pi [/mm] x) [mm] \Rightarrow [/mm] w' = [mm] -\sin(4 \pi [/mm] x) [mm] \cdot 4\pi; \quad [/mm] z = [mm] \frac{1}{n\pi} \sin(n\pi [/mm] x) [mm] \Rightarrow [/mm] z' = [mm] \cos(n \pi [/mm] x)$
[mm] $$\Rightarrow [/mm] 2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx = [mm] \frac{4}{n^2 \pi} \underbrace{\Big[\sin(n \pi x) \cdot \cos(4 \pi x) \Big]_0^1}_{=0} [/mm] + [mm] \frac{16}{n^2} \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x)~dx$$

Damit hätte ich:
[mm] $$(2-\frac{16}{n^2}) \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x)~dx = 0$$

Ich vermute das ist falsch...

Bezug
                                
Bezug
Laplace-Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 03:02 So 13.12.2009
Autor: rainerS

Hallo!

> Bei der partiellen Integration bekomme ich raus, dass das
> Integral =0 ist - was vermutlich keinen Sinn macht...?

Doch schon, es ist nämlich 0 für [mm] $n\not=4$. [/mm]

>  
> [mm]\Rightarrow[/mm] Calculating [mm]2 \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x) ~dx[/mm]
> (Integration by Parts):
>  
> [mm]u = \sin(4 \pi x) \Rightarrow u' = \sin(4 \pi x) \cdot 4 \pi; \quad v=-\frac{1}{n\pi}\cdot \cos(n \pi x) \Rightarrow v' = \sin(n \pi x)[/mm]
>  
> [mm]2 \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x) ~dx = -\frac{1}{n\pi} \underbrace{\Big[\cos(n \pi x) \cdot \sin(4 \pi x)\Big]_0^1}_{=0} + \frac{4}{n} \int_0^1 \cos(4 \pi x) \cdot \cos(n \pi x)~dx[/mm]

Hier hast du rechts den Faktor $2$ vergessen:

[mm]2 \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x) ~dx = -\frac{\red{2}}{n\pi} \underbrace{\Big[\cos(n \pi x) \cdot \sin(4 \pi x)\Big]_0^1}_{=0} + \frac{\red{8}}{n} \int_0^1 \cos(4 \pi x) \cdot \cos(n \pi x)~dx[/mm]

>  
> [mm]w = \cos(4 \pi x) \Rightarrow w' = -\sin(4 \pi x) \cdot 4\pi; \quad z = \frac{1}{n\pi} \sin(n\pi x) \Rightarrow z' = \cos(n \pi x)[/mm]
>  
> [mm]\Rightarrow 2 \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x) ~dx = \frac{4}{n^2 \pi} \underbrace{\Big[\sin(n \pi x) \cdot \cos(4 \pi x) \Big]_0^1}_{=0} + \frac{16}{n^2} \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x)~dx[/mm]

Ebenso:
[mm]\Rightarrow 2 \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x) ~dx = \frac{\red{8}}{n^2 \pi} \underbrace{\Big[\sin(n \pi x) \cdot \cos(4 \pi x) \Big]_0^1}_{=0} + \frac{\red{32}}{n^2} \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x)~dx[/mm]

>  
> Damit hätte ich:
>  [mm](2-\frac{16}{n^2}) \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x)~dx = 0[/mm]

Korrekt: [mm](1-\frac{16}{n^2}) \int_0^1 \sin(4 \pi x) \cdot \sin(n \pi x)~dx = 0[/mm]

Für $n=4$ ersetzt du besser nach der 1. partiellen Integration  [mm] $\cos^2(4\pi [/mm] x) = 1 - [mm] \sin^2(4\pi [/mm] x)$.

Viele Grüße
   Rainer


Bezug
                                
Bezug
Laplace-Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:50 So 13.12.2009
Autor: GreatBritain

Vielen Dank! Ich habe meine Rechnung verbessert, und weiter gemacht. Korrektur also erst ab $n [mm] \ne [/mm] 4$ nötig :-)

Find $D$ such that $$u(x,y) = [mm] \sum_{n=1}^\infty [/mm] D [mm] \cdot \sinh(\frac{n \pi y}{\alpha}) \cdot \sin(n \pi [/mm] x)$$ satisfies $u(x,1) = f(x) = [mm] \sin(4 \pi [/mm] x)$
[mm] $$\Rightarrow [/mm] u(x,1) = [mm] \sum_{n=1}^\infty \underbrace{D \cdot \sinh ( \frac{n \pi}{\alpha})}_{= d_n} \cdot \sin(n \pi [/mm] x) = [mm] \sin(4 \pi [/mm] x)$$
using $f(x) = [mm] \sin(4 \pi [/mm] x)$ as a Fourier Series:
$$ f(x) = [mm] \sum_{n=1}^\infty d_n \cdot \sin(n \pi k)~\text{with}~d_n [/mm] = D [mm] \cdot \sinh [/mm] ( [mm] \frac{n \pi}{\alpha}) [/mm] = [mm] \frac{2}{1} \int_0^1 [/mm] f(x) [mm] \cdot \sin(\frac{n \pi x}{1})= [/mm] 2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx


[mm] $\Rightarrow$ [/mm] Calculating [mm] $d_n [/mm] = 2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx$ (Integration by Parts):

$u = [mm] \sin(4 \pi [/mm] x) [mm] \Rightarrow [/mm] u' = [mm] \sin(4 \pi [/mm] x) [mm] \cdot [/mm] 4 [mm] \pi; \quad v=-\frac{1}{n\pi}\cdot \cos(n \pi [/mm] x) [mm] \Rightarrow [/mm] v' = [mm] \sin(n \pi [/mm] x)$
$$2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx = [mm] -\frac{2}{n\pi} \underbrace{\Big[\cos(n \pi x) \cdot \sin(4 \pi x)\Big]_0^1}_{=0} [/mm] + [mm] \frac{8}{n} \int_0^1 \cos(4 \pi [/mm] x) [mm] \cdot \cos(n \pi [/mm] x)~dx $$

$w = [mm] \cos(4 \pi [/mm] x) [mm] \Rightarrow [/mm] w' = [mm] -\sin(4 \pi [/mm] x) [mm] \cdot 4\pi; \quad [/mm] z = [mm] \frac{1}{n\pi} \sin(n\pi [/mm] x) [mm] \Rightarrow [/mm] z' = [mm] \cos(n \pi [/mm] x)$
[mm] $$\Rightarrow [/mm] 2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx = [mm] \frac{8}{n^2 \pi} \underbrace{\Big[\sin(n \pi x) \cdot \cos(4 \pi x) \Big]_0^1}_{=0} [/mm] + [mm] \frac{32}{n^2} \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x)~dx$$

Hence
$$2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx =  [mm] \frac{32}{n^2} \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x)~dx$$
[mm] $$\Rightarrow [/mm] (1 - [mm] \frac{16}{n^2}) \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx = 0$$

NEU

$n [mm] \ne [/mm] 4$:
[mm] $$\Rightarrow d_n [/mm] = 2 [mm] \int_0^1 \sin(4 \pi [/mm] x) [mm] \cdot \sin(n \pi [/mm] x) ~dx = 0$$

$n=4$:
$2 [mm] \int_0^1 \sin^2(4 \pi [/mm] x) ~dx = 2 [mm] \int_0^1 \cos^2(4\pi [/mm] x)~ dx = 2 [mm] \int_0^1 \big(1-\sin^2(4\pi x)\big)~dx [/mm] =2 [mm] \int_0^1 [/mm] 1~dx - [mm] 2\int_0^1 \sin^2(4\pi [/mm] x)~dx$
[mm] $\Rightarrow [/mm] 4 [mm] \int_0^1 \sin^2(4\pi [/mm] x)~dx = 2 [mm] \int_0^1 [/mm] 1~dx = 2 [mm] \Big[x\Big]_0^1 [/mm] = 2$
[mm] $$\Rightarrow d_4 [/mm] = 2 [mm] \int_0^1 \sin^2(4\pi [/mm] x) = 1$$


This means that
[mm] $$d_4 [/mm] = D [mm] \cdot \sinh(\frac{4\pi}{\alpha}) [/mm] = [mm] 1\Rightarrow [/mm] D = [mm] \frac{1}{\sinh(\frac{4\pi}{\alpha})}$$ [/mm]


$$u(x,y) = [mm] \sum_{n=1}^\infty \frac{\sinh(\frac{n \pi y}{\alpha})}{\sinh(\frac{4\pi}{\alpha})} \cdot \sin(n \pi [/mm] x)$$

Stimmt das? Und dann bin ich doch fertig - oder?
Vielen lieben Dank! Gruß GB

Bezug
                                        
Bezug
Laplace-Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:32 So 13.12.2009
Autor: rainerS

Hallo!

> Vielen Dank! Ich habe meine Rechnung verbessert, und weiter
> gemacht. Korrektur also erst ab [mm]n \ne 4[/mm] nötig :-)

Ja, dein Integral für $n=4$ ist richtig:

> [mm]\Rightarrow d_4 = 2 \int_0^1 \sin^2(4\pi x) = 1[/mm]
>  
>
> This means that
>  [mm]d_4 = D \cdot \sinh(\frac{4\pi}{\alpha}) = 1\Rightarrow D = \frac{1}{\sinh(\frac{4\pi}{\alpha})}[/mm]

[ok]

>  
>
> [mm]u(x,y) = \sum_{n=1}^\infty \frac{\sinh(\frac{n \pi y}{\alpha})}{\sinh(\frac{4\pi}{\alpha})} \cdot \sin(n \pi x)[/mm]
>  
> Stimmt das? Und dann bin ich doch fertig - oder?

Du hast doch ausgerechnet, dass alle [mm] $d_n$ [/mm] außer [mm] $d_4$ [/mm] verschwinden, also kann da keine Summe stehen:

[mm]u(x,y) = \frac{\sinh(\frac{n \pi y}{\alpha})}{\sinh(\frac{4\pi}{\alpha})} \cdot \sin(n \pi x)[/mm]

Mach die Probe: Rechne nach, ob DGL und Randbedingungen erfüllt sind!

Viele Grüße
   Rainer

Bezug
                                                
Bezug
Laplace-Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:05 So 13.12.2009
Autor: GreatBritain


> Du hast doch ausgerechnet, dass alle [mm]d_n[/mm] außer [mm]d_4[/mm]
> verschwinden, also kann da keine Summe stehen:

ja, das ist in der tat logisch...

>  
> [mm]u(x,y) = \frac{\sinh(\frac{n \pi y}{\alpha})}{\sinh(\frac{4\pi}{\alpha})} \cdot \sin(n \pi x)[/mm]
>  

hier kann ich doch jetzt auch gleich noch jedes n durch eine 4 ersetzen - oder seh ich das falsch?

also [mm]u(x,y) = \frac{\sinh(\frac{4 \pi y}{\alpha})}{\sinh(\frac{4\pi}{\alpha})} \cdot \sin(4 \pi x)[/mm]


> Mach die Probe: Rechne nach, ob DGL und Randbedingungen
> erfüllt sind!
>  

Das müsste meiner Meinung nach jetzt alles stimmen.

> Viele Grüße
>     Rainer

Vielen Dank für deine Hilfe!!
Gruß GB

Bezug
                                                        
Bezug
Laplace-Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:12 So 13.12.2009
Autor: rainerS

Hallo!

> > Du hast doch ausgerechnet, dass alle [mm]d_n[/mm] außer [mm]d_4[/mm]
> > verschwinden, also kann da keine Summe stehen:
>  
> ja, das ist in der tat logisch...
>  
> >  

> > [mm]u(x,y) = \frac{\sinh(\frac{n \pi y}{\alpha})}{\sinh(\frac{4\pi}{\alpha})} \cdot \sin(n \pi x)[/mm]
>  
> >  

>
> hier kann ich doch jetzt auch gleich noch jedes n durch
> eine 4 ersetzen - oder seh ich das falsch?

Ja, das war mal wieder eine der Folgen von Cut-and-waste ;-)


> also [mm]u(x,y) = \frac{\sinh(\frac{4 \pi y}{\alpha})}{\sinh(\frac{4\pi}{\alpha})} \cdot \sin(4 \pi x)[/mm]
>  
>
> > Mach die Probe: Rechne nach, ob DGL und Randbedingungen
> > erfüllt sind!
>  >  
>
> Das müsste meiner Meinung nach jetzt alles stimmen.

[ok]

Viele Grüße
    Rainer



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Partielle Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]