matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenElektrotechnikLaplace für Potentiale
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Elektrotechnik" - Laplace für Potentiale
Laplace für Potentiale < Elektrotechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Laplace für Potentiale: Potential im Zylinder
Status: (Frage) beantwortet Status 
Datum: 14:05 Di 18.09.2012
Autor: BigDeal

Aufgabe
Gegeben sind zwei in z-Richtung homogene, konzentrische Zylinder der Radien a und b. Der ¨außere
Zylinder hat das konstante Potential [mm] \phi_{1}. [/mm] Das Potential auf dem inneren Zylinder lautet:

[mm] \phi_{0}(\alpha)=\phi_{00}*sin(3\alpha) [/mm]

Die Permittivit¨at ist im gesamten Raum konstant [mm] \varepsilon. [/mm]

Berechnen Sie das Potential im Raum a [mm] \le [/mm] r [mm] \le [/mm] b.

Hallo,
laut Musterlösung heißt es:

Das Potential [mm] \phi [/mm] der gegebenen Anordnung ist eine Funktion der Koordinaten r und [mm] \alpha. [/mm] Bei dieser
Abhängigkeit lautet eine allgemeine Lösung der Laplacegleichung [mm] \Delta\phi [/mm] = 0

[mm] \phi(r,\alpha)=(A_{0}+B_{0}ln(r))(C_{0}+D_{0}\alpha)+(A_{1}r^n+B_{1}r^{-n})(C_{1}cos(n\alpha)+D_{1}sin(n\alpja)) [/mm]

Woher kommt diese allgemeine Lösung und wie steht sie mit dem Produktansatz:

[mm] \phi=f(r)*g(/alpha) [/mm] in Verbindung?

Vielen Dank für eure Hilfe.

        
Bezug
Laplace für Potentiale: Antwort
Status: (Antwort) fertig Status 
Datum: 13:20 Mi 19.09.2012
Autor: Marcel08

Hallo!


> Gegeben sind zwei in z-Richtung homogene, konzentrische
> Zylinder der Radien a und b. Der ¨außere
>  Zylinder hat das konstante Potential [mm]\phi_{1}.[/mm] Das
> Potential auf dem inneren Zylinder lautet:
>  
> [mm]\phi_{0}(\alpha)=\phi_{00}*sin(3\alpha)[/mm]
>  
> Die Permittivit¨at ist im gesamten Raum konstant
> [mm]\varepsilon.[/mm]
>  
> Berechnen Sie das Potential im Raum a [mm]\le[/mm] r [mm]\le[/mm] b.
>  Hallo,
>  laut Musterlösung heißt es:
>  
> Das Potential [mm]\phi[/mm] der gegebenen Anordnung ist eine
> Funktion der Koordinaten r und [mm]\alpha.[/mm] Bei dieser
>  Abhängigkeit lautet eine allgemeine Lösung der
> Laplacegleichung [mm]\Delta\phi[/mm] = 0

>
>
>
>

> [mm]\phi(r,\alpha)=(A_{0}+B_{0}ln(r))(C_{0}+D_{0}\alpha)+(A_{1}r^n+B_{1}r^{-n})(C_{1}cos(n\alpha)+D_{1}sin(n\alpja))[/mm]
>  
> Woher kommt diese allgemeine Lösung und wie steht sie mit
> dem Produktansatz:
>  
> [mm]\phi=f(r)*g(/alpha)[/mm] in Verbindung?
>  
> Vielen Dank für eure Hilfe.


Diese Gleichung erhältst du ursprünglich aus dem Laplace-Operator des Zylinderkoordinatensystems unter Berücksichtigung der [mm] \varrho [/mm] - und [mm] \varphi [/mm] -Abhängigkeit (Formelsammlung). Außerdem gilt es die [mm] 2\pi [/mm] -Periodizität der Problemstellung zu berücksichtigen. Die genaue Herleitung der Lösung wird mit hoher Wahrscheinlichkeit im Skript zur Veranstaltung stehen.




Viele Grüße, Marcel

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Elektrotechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]