matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFolgen und ReihenLeibnizsche Reihe
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Folgen und Reihen" - Leibnizsche Reihe
Leibnizsche Reihe < Folgen und Reihen < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Leibnizsche Reihe: zahl pi
Status: (Frage) beantwortet Status 
Datum: 21:58 So 24.01.2010
Autor: Tanja26

Aufgabe


Es gilt [mm] \summe_{k=0}^{\infty}\bruch{(-1)^k}{2k+1}=\bruch{\pi}{4} [/mm]
unter Benutzung dieser Summe muss ich Zeigen ,dass
[mm] \pi=2+\summe_{k=1}^{\infty}\bruch{16}{(4k-3)(16k^2-1)} [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.
Hallo,
Ich muss dass zeigen,zu erst habe ich beide Seite mit 4 multipliziert,und wie macht man dann weiter. Konnte vielleicht  jemanden mir helfen.


        
Bezug
Leibnizsche Reihe: Antwort
Status: (Antwort) fertig Status 
Datum: 23:52 So 24.01.2010
Autor: Al-Chwarizmi


> Es gilt:  [mm]\summe_{k=0}^{\infty}\bruch{(-1)^k}{2k+1}=\bruch{\pi}{4}[/mm]

>  unter Benutzung dieser Summe muss ich Zeigen ,dass

>  [mm]\pi=2+\summe_{k=1}^{\infty}\bruch{16}{(4k-3)(16k^2-1)}[/mm]

>  Hallo,
>  Ich muss dass zeigen, zuerst habe ich beide Seite mit 4
>  multipliziert,und wie macht man dann weiter.


Hallo Tanja,

das sieht ja nach einer leckeren Knacknuss aus !

Trotzdem denke ich, nach etwas rumprobieren einen
Weg zur Lösung zu sehen. Zuerst kann man bemerken,
dass man den Nenner des allg. Summanden in der
zweiten Formel weiter faktorisieren kann:

      $\ [mm] (4\,k-3)(16\,k^2-1)\ [/mm] =\ [mm] (4\,k-3)(4\,k-1)(4\,k+1)$ [/mm]

Dividiert man die zweite Gleichung durch 4 , so hat man
die beiden Darstellungen für [mm] \frac{\pi}{4} [/mm] :

1.)  $\ [mm] \frac{\pi}{4}\ [/mm] =\ [mm] \summe_{k=0}^{\infty}\bruch{(-1)^k}{2k+1}\ [/mm] =\ [mm] 1-\frac{1}{3}+\frac{1}{5}-\frac{1}{7}+\frac{1}{9}-\frac{1}{11}+\frac{1}{13}-\,.......$ [/mm]

2.)  $\ [mm] \frac{\pi}{4}\ [/mm] =\ [mm] \frac{1}{2}+4*\left(\frac{1}{1*3*5}+\frac{1}{5*7*9}+\frac{1}{9*11*13}+\,.......\right)$ [/mm]

wobei die erste Darstellung als bewiesen und die zweite
als die zu beweisende betrachtet wird.
Nun kann man versuchen, die Summanden der ersten
Reihe so umzugruppieren (bzw. anders aufzuteilen), dass
irgendwie die Summanden der zweiten Reihe herauskom-
men. Dabei habe ich mir probeweise am Summanden
[mm] \frac{1}{5*7*9} [/mm]  der zweiten Summe überlegt: "wie könnte ich
diesen Summanden aus den drei Summanden  [mm] \frac{1}{5} [/mm] , [mm] -\,\frac{1}{7} [/mm] , [mm] \frac{1}{9} [/mm]
der ersten Summe mit den entsprechenden Nennern
erzeugen ?"

(der Rest ist ein wenig Rechenarbeit)


LG    Al-Chw.



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Folgen und Reihen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]