matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLineare Abbildung bestimmen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Lineare Algebra" - Lineare Abbildung bestimmen
Lineare Abbildung bestimmen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Abbildung bestimmen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:53 Do 30.11.2006
Autor: KnockDown

Aufgabe
Bestimmen Sie in dem folgenden Fall die lineare Abbildungen $F: [mm] \IR^{n} \to \IR^{m}, [/mm] die jeweils die nachstehenden Gleichungen erfüllen.

$F [mm] \vektor{\vektor{2 \\ 1 \\ 0}}$ [/mm] = [mm] $\vektor{\vektor{0 \\ 1 \\ 3}}$, [/mm] $F [mm] \vektor{\vektor{0 \\ 1 \\ 2}}$ [/mm] = [mm] $\vektor{\vektor{2 \\ -1 \\ -1}}$, [/mm] $F [mm] \vektor{\vektor{2 \\ 2 \\ 2}}$ [/mm] = [mm] $\vektor{\vektor{2 \\ 0 \\ 2}}$, [/mm]

Hi,

leider kann ich diese Aufgabe nicht lösen, ich weiß aber, dass hier sozusagen die "Funktion" gesucht ist, wenn ich die ersten Zahlen des jeweils ersten Vektors eingebe, dass dann der zweite Vektor herauskommen muss.

Diese Funktion muss überall gültig sein bei allen drei Vektoren.


Wie kann ich an diese Aufgabe ran gehen bzw. kann mir jemand bitte helfen?



Gruß Thomas

        
Bezug
Lineare Abbildung bestimmen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:50 Mi 06.12.2006
Autor: otto.euler

Eine lineare Abbildung [mm] \IR^3\to\IR^3 [/mm] kann als Matrix dargestellt werden. Beachte, dass die dritte Abbildung tautologisch aufgrund der Linearität ist:
F(2/2/2) = F(2/1/0) + F(0/1/2) = (0/1/3) + (2/-1/-1) = (2/0/2).

Also lautet der Ansatz:

[mm] \pmat{ a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} } [/mm] * [mm] \vektor{2 \\ 1 \\ 0} [/mm] = [mm] \vektor{0 \\ 1 \\ 3} [/mm]

und zugleich

[mm] \pmat{ a_{1,1} & a_{1,2} & a_{1,3} \\ a_{2,1} & a_{2,2} & a_{2,3} \\ a_{3,1} & a_{3,2} & a_{3,3} } [/mm] * [mm] \vektor{0 \\ 1 \\ 2} [/mm] = [mm] \vektor{2 \\ -1 \\ -1} [/mm]

Anstelle einer Matrix mit neun beliebigen Einträgen, erhältst du eine Matrix mit nur drei Parametern. Diese Matrixschar ist dann deine Lösung.

Bezug
                
Bezug
Lineare Abbildung bestimmen: Danke!
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:19 Mi 06.12.2006
Autor: KnockDown

Hi Oliver,

danke für die Erklärung!


Dann werde ich das jetzt mal rechnen. Ich habe das glaube ich jetzt verstanden!



Gruß Thomas

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]