matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesLineare Algebra
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra Sonstiges" - Lineare Algebra
Lineare Algebra < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Algebra: Staatsexamensaufgabe H14
Status: (Frage) überfällig Status 
Datum: 16:35 Mi 17.12.2014
Autor: Examen15

Aufgabe
Wahr oder falsch: Begründen Sie Ihre Antwort durch eine Erklärung oder eine Widerlegung.
a) Jede Diagonalmatrix ist ähnlich zu einer symmetrischen Matrix.
b) Der Spaltenraum einer Matrix ist das orthogonale Komplement des Zeilenraums der Matrix.
c) Wenn v,u,w linear abhängig voneinander sind, so hat der Unterraum (v,u,w) die Dimension 2.
d) Wenn ein Endomorphismus f den Eigenwert 0 hat, so ist dim Kern(f)>0.
e) Für je zwei 3x3-Matrizen A und B gilt: Wenn AB=E3, dann ist auch BA=E3.
f) Für je zwei 3x3-Matrizen A und B gilt: Wenn AB=0, dann ist auch BA=0.

Hallo,
für meinen Staatsexamenskurs muss ich die geannte Aufgabe lösen. Die Teilaufgaben a und f konnte ich bereits widerlegen und die Teilaufgabe f beweisen. Bei den Aufgaben b, c und d weiß ich leider nicht einmal ob ich sie widerlegen oder bweisen soll.
Lg Examen15

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lineare Algebra: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 Mi 17.12.2014
Autor: fred97

zu b): denke mal ein eine Matrix, die nur Einsen enthält.

zu c): denke an u=v=w=0.

zu d): das ist richtig, beweise es !

FRED

Bezug
                
Bezug
Lineare Algebra: Teilaufgabe a
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:07 So 28.12.2014
Autor: Examen15

Danke für eure Hilfe ich konnte jetzt die Teilaufgaben b bis f lösen. Da wir nur mit reelen Matrizen rechnen ist mir beim durchlesen meine Idee von a aufgefallen das meine Idee flasch war nun versuche ich diese Aussage zu beweisen. Kann ich den sagen, da jede Diagonalmatrix symmetrich ist und jede Matrix zu sich selbst ähnlich ist, jede Diagonalmatix ähnlich zu einer symmetrichen Matrix ist?

Bezug
                        
Bezug
Lineare Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:41 So 28.12.2014
Autor: fred97


> Danke für eure Hilfe ich konnte jetzt die Teilaufgaben b
> bis f lösen. Da wir nur mit reelen


...... reellen ....


>  Matrizen rechnen ist
> mir beim durchlesen meine Idee von a aufgefallen das meine
> Idee flasch war nun versuche ich diese Aussage zu beweisen.



> Kann ich den sagen, da jede Diagonalmatrix symmetrich ist
> und jede Matrix zu sich selbst ähnlich ist, jede
> Diagonalmatix ähnlich zu einer symmetrichen Matrix ist?

Im Raum der reellen Matrizen st das rchtig.

FREd


Bezug
        
Bezug
Lineare Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:18 Mi 17.12.2014
Autor: Schadowmaster


> Die Teilaufgaben a und f konnte ich bereits
> widerlegen und die Teilaufgabe f beweisen.

Huch, was jetzt? Wenn du die a) widerlegt hast würde mich mal sehr interessieren wie, denn die a) stimmt.

Bezug
                
Bezug
Lineare Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 07:32 Do 18.12.2014
Autor: fred97


> > Die Teilaufgaben a und f konnte ich bereits
> > widerlegen und die Teilaufgabe f beweisen.

>


Hallo shadow,

  

> Huch, was jetzt? Wenn du die a) widerlegt hast würde mich
> mal sehr interessieren wie, denn die a) stimmt.

bist Du da sicher ?

Betrachten wir mal die Menge [mm] \IC^{n \times n} [/mm] aller komplexen $n [mm] \times [/mm] n$ - Matrizen.

Ist $I$ die Einheitsmatrix in  [mm] \IC^{n \times n}, [/mm] so ist

    $i*I$

eine tadellose Diagonalmatrix. Diese Matrix hat den n-fachen Eigenwert $i$.

Ist $A [mm] \in \IC^{n \times n}$ [/mm] symmetrisch, so hat $A$ reelle Eigenwerte.

Da ähnliche Matrizen dieselben Eigenwerte habe, können $i*I$ und $A$ nicht ähnlich sein !

Gruß FRED


Bezug
                        
Bezug
Lineare Algebra: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 19:12 Do 18.12.2014
Autor: Schadowmaster

Ok, da kein Körper angegeben war, bin ich einfach mal von reellen Matrizen ausgegangen bzw. von Symmetrie im Sinne von Transpositation, ohne komplexes Konjugieren.
Natürlich hast du Recht, wenn man über komplexe Matrizen spricht.

Bezug
        
Bezug
Lineare Algebra: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:20 Sa 17.01.2015
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]