matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLineare DGL lösen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Gewöhnliche Differentialgleichungen" - Lineare DGL lösen
Lineare DGL lösen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare DGL lösen: Tipps?
Status: (Frage) beantwortet Status 
Datum: 15:55 Do 05.11.2009
Autor: raubkaetzchen

Aufgabe
Bestimmen sie die allgemeine Lösung der folgenden linearen Differentialgleichungen:
X'= [mm] 2x+1+t^{2}, x'=3x+e^{2x}, [/mm] x'=x+t cos(2t), [mm] x'=-x-t*e^{-t}, [/mm]  

Ich habe Probleme diese Aufgabe zu lösen. Ich verstehe nicht welchen ansatz ich wählen soll, was ich mache ich derh mich nur im Kreis.

könnt ihr mie tipps geben bzw. sagen, wie ich da ran zu gehen habe?

danke

        
Bezug
Lineare DGL lösen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:14 Do 05.11.2009
Autor: Herby

Hallo,

> Bestimmen sie die allgemeine Lösung der folgenden linearen
> Differentialgleichungen:
>  X'= [mm]2x+1+t^{2}, x'=3x+e^{2x},[/mm] x'=x+t cos(2t),
> [mm]x'=-x-t*e^{-t},[/mm]
> Ich habe Probleme diese Aufgabe zu lösen. Ich verstehe
> nicht welchen ansatz ich wählen soll, was ich mache ich
> derh mich nur im Kreis.


ich schreibe sie dir mal ein bisschen um, vielleicht siehst du es dann etwas besser:

1. [mm] x'-2x=t^2+1 [/mm]  (Ansatz: [mm] At^2+Bt+C [/mm] und natürlich zuerst die homogene DGL lösen)

2. Da soll es sicher [mm] e^{2\red{t}} [/mm] heißen, oder?  [mm] x'-3x=e^{2t} [/mm] (Ansatz: [mm] A*e^{2t}) [/mm]

3. [mm] x'-x=t*\cos(2t) [/mm]  (Ansatz: [mm] (At+B)*(\cos(2t)+\sin(2t)) [/mm] -- ob das allerdings klappt, weiß ich nicht - ein Versuch ist es aber wert)

4. [mm] x'+x=-t*e^{-t} [/mm]  (Ansatz: [mm] At*e^{-t} [/mm] -- auch hier kann es sein, dass der Ansatz nicht hinhaut - probier' es aus)

Und nun -- good luck [kleeblatt]


Lg
Herby

Bezug
                
Bezug
Lineare DGL lösen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:24 Do 05.11.2009
Autor: raubkaetzchen

ich habe bei der aufgabe geguckt und es ist [mm] e^{2t} [/mm]
Aber DANKE für die tipps! es hat mich echt weiter gebracht!
Hatte ein brett vorm kopf!
Danke und LG!

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]