matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - Moduln und VektorräumeLineare Unabhängigkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Moduln und Vektorräume" - Lineare Unabhängigkeit
Lineare Unabhängigkeit < Moduln/Vektorraum < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lineare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:49 Di 08.04.2008
Autor: Raiden82

Aufgabe
Es seien [mm] \vec{v_{1}},\vec{v_{2}},...\vec{v_{n}} [/mm] Vektoren aus einem Vektorraum V. Welche der folgenden Aussagen sind richtig?

1: Die Vektoren $ [mm] \vec{v_{1}},\vec{v_{2}},...\vec{v_{n}} [/mm] $ sind linear unabhängig, wenn sich der Nullvektor als Linearkombination von [mm] \vec{v_{1}},\vec{v_{2}},...\vec{v_{n}} [/mm] darstellen lässt.
2: Die Vektoren [mm] \vec{v_{1}},\vec{v_{2}},...\vec{v_{n}} [/mm] sind linear unabhängig, wenn [mm] \vec{v_{1}}+\vec{v_{2}}+...+\vec{v_{n}} [/mm] = [mm] \vec{v_{0}} [/mm] gilt.
3: Die Vektoren [mm] \vec{v_{1}},\vec{v_{2}},...\vec{v_{n}} [/mm] sind linear unabhängig, wenn sich der Nullvektor auf mehr als eine Weise als Linearkombination von [mm] \vec{v_{1}},\vec{v_{2}},...\vec{v_{n}} [/mm] darstellen lässt.  

Meine Ansatz

1: Falsch
2: Falsch
3: Wahr

Könnte das jemand überprüfen ?

Danke schonmal ;)

        
Bezug
Lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 20:06 Di 08.04.2008
Autor: algieba

Hi

Ich würde es so sagen:

1) Wahr
2) Falsch
3) Falsch

denn:

Die Definition für Lineare Unabhängigkeit ist:
[mm] a_1*\vec{v_1}+a_2*a*\vec{v_2}+...+a_n*\vec{v_n}=0 \Rightarrow a_1, a_2, ... , a_n = 0[/mm]

Du schreibst also den Nullvektor als Linearkombination der Vektoren. Und diese Vektoren sind nur dann linear unabhängig wenn die einzige Lösung [mm]a_1, a_2, ... , a_n = 0[/mm] ist.

Damit ist die erste Aussage schon mal wahr.

Die 2. Aussage ist falsch weil [mm]\vec{v_{1}}+\vec{v_{2}}+...+\vec{v_{n}} = \vec{v_0}[/mm] nichts anderes als [mm]1*\vec{v_{1}}+1*\vec{v_{2}}+...+1*\vec{v_{n}} = \vec{v_0}[/mm] ist, also ist [mm]a_1, a_2, ... , a_n = 0[/mm] nicht die einzige Lösung.

Die 3. Aussage ist auch falsch, weil man ja den Nullvektor nur auf eine Art als Linearkombination schreiben kann, wenn die Vektoren linear unabhängig sind.

Viele Grüße
algieba

Bezug
                
Bezug
Lineare Unabhängigkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:08 Di 08.04.2008
Autor: Raiden82

Danke!! Meinen Denkfhler gefunden ;)

Bezug
                
Bezug
Lineare Unabhängigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:09 Di 08.04.2008
Autor: Raiden82

Kann mir das nochmal wer anders bestätigen, verstehe die 3. Begründung nicht meines wissens müsste als Atwort falsch da stehen -.- oder bin ich so durcheinander ?.?

Bezug
                        
Bezug
Lineare Unabhängigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 21:27 Di 08.04.2008
Autor: Tyskie84

Hallo!

Die Defintion der Linearen Unabhängigkeit weisst du ja oder spätestens nach dem Beitrag von algieba :-)

So die dritte aussage des satzes ist:  
Die Vektoren [mm] v_{1}, v_{2},..v_{n} [/mm]  sind linear unabhängig, wenn sich der Nullvektor auf mehr als eine Weise als Linearkombination von [mm] v_{1}, v_{2},...,v_{n} [/mm] darstellen lässt.
Und das widerspricht doch gerade der Definition der linearen unabhängigkeit.
[mm] \Rightarrow [/mm] falsche Aussage.

[hut] Gruß

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Moduln und Vektorräume"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]