matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Lineare AlgebraLinearkombination von Vektoren
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Uni-Lineare Algebra" - Linearkombination von Vektoren
Linearkombination von Vektoren < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Linearkombination von Vektoren: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 15:59 So 09.12.2007
Autor: little_sunshine

Aufgabe
Sei V ein nicht notwenig erzeugter K-Vektorraum mit Basis [mm] B:=\{v_{i} | i \in I\}. [/mm] Zeigen Sie (analog zu Satz 7.5), dass sich jeder Vektor aus V als eindeutige endliche Linearkombination von Vektoren aus B schreiben lässt.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

Hallo erstmal!

Also, V ist ja ein nicht notwendig endlich erzeugter Vektorraum. Ich weiß, dass jeder Vektorraum eine Basis hat. Alle Vektoren aus V sollen sich ja  als eindeutige endliche Linearkombination von Vektoren aus B schreiben lassen.
Problem ist nur, dass sich der Satz 7.5 bei uns um sin und cos dreht. Ich kann mir nicht vorstellen, dass mir das helfen kann (da geht es um die Schlussfolgerung, dass exp(ix)=cos(x)+isin(x) ist).
Ich kann mir aber Vorstellen, dass unser Prof meinte:

9.5 Satz:
Sei V ein K-Vektorraum mit V=<E>.
Sei ferner L eine lineare unabhängige Teilmenge von V mit L [mm] \le [/mm] E [mm] \le [/mm] V. Dann existiert eine Basis B von V mit L [mm] \subseteq [/mm] B [mm] \subseteq [/mm] E.

Hilft mir der Satz irgendwie weiter?
Muss ich denn nicht eigentlich "nur" zeigen, dass V ne Teilmenge von B ist? Oder ist es genau andersrum?

Wär schön wenn mir wer helfen könnte.

Gruß
little_sunshine


Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Linearkombination von Vektoren: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 20:42 Di 11.12.2007
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Lineare Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]