matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLipschitzstetigkeit
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Lipschitzstetigkeit
Lipschitzstetigkeit < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lipschitzstetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:03 Di 19.01.2010
Autor: laphus

Aufgabe
[mm] f:D\mapsto\IR, [/mm] f sei stetig differenzierbar

Folgt aus stetiger Differenzierbarkeit der Funktion f die Lipschitzstetigkeit von f oder nur die lokale Lipschitzstetigkeit von f?
Meine Überlegung: f(x)= [mm] x^{2} [/mm] ist stetig differenzierbar aber nur lokal lipschitzstetig. Demnach ist die obige Aussage doch falsch, oder?

        
Bezug
Lipschitzstetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:17 Di 19.01.2010
Autor: fred97


> [mm]f:D\mapsto\IR,[/mm] f sei stetig differenzierbar
>  Folgt aus stetiger Differenzierbarkeit der Funktion f die
> Lipschitzstetigkeit von f oder nur die lokale
> Lipschitzstetigkeit von f?
>  Meine Überlegung: f(x)= [mm]x^{2}[/mm] ist stetig differenzierbar
> aber nur lokal lipschitzstetig. Demnach ist die obige
> Aussage doch falsch, oder?

Oben steht keine Aussage ! Da steht die Frage:

"Folgt aus stetiger Differenzierbarkeit der Funktion f die Lipschitzstetigkeit von f oder nur die lokale Lipschitzstetigkeit von f? "

Das i.a. die Lipschitzstetigkeit nicht folgt, hast Du mit Deinem obigen Beispiel gezeigt.

Jetzt mußt Du noch zeigen: aus stetiger Differenzierbarkeit folgt lokale Lipschitzstetigkeit

FRED

Bezug
                
Bezug
Lipschitzstetigkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:49 Di 19.01.2010
Autor: laphus

Vielen Dank für die schnelle Antwort! Der Beweis "stetig differenzierbar [mm] \Rightarrow [/mm] lok. lipschitzstetig" geht mit Hilfe des Mittelwertsatzes.
Stimmt diese Aussage eigentlich auch dann, wenn [mm] f:D\mapsto\IR^{n} [/mm] abbildet und stetig differenzierbar in jeder Komponente ist???

Bezug
                        
Bezug
Lipschitzstetigkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 14:51 Di 19.01.2010
Autor: fred97


> Vielen Dank für die schnelle Antwort! Der Beweis "stetig
> differenzierbar [mm]\Rightarrow[/mm] lok. lipschitzstetig" geht mit
> Hilfe des Mittelwertsatzes.

Genau !


>  Stimmt diese Aussage eigentlich auch dann, wenn
> [mm]f:D\mapsto\IR^{n}[/mm] abbildet und stetig differenzierbar in
> jeder Komponente ist???  

Ja, kannst Du es auch beweisen ?

FRED

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]