matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLösen DGL mit Randbedingungen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Gewöhnliche Differentialgleichungen" - Lösen DGL mit Randbedingungen
Lösen DGL mit Randbedingungen < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösen DGL mit Randbedingungen: RWP
Status: (Frage) beantwortet Status 
Datum: 15:28 Do 16.01.2014
Autor: brockerdocker

Hallo,

ich versuche gerade Eigenfrequenzen eines Biegebalkens nach Timoshenko zu berechnen. Dummerweise muss ich dazu eine gewöhnliche lineare DGL 4. Ordnung lösen und an die geforderten Randbedingungen anpassen und dies bereitet mir einiges Kopfzerbrechen. Ich brauche keine allgemeine Lösung, sondern mir reicht eine spezielle Lösung, die die Randbedingungen erfüllt. Ich kenne für andere Randbedingungen bereits eine spezielle Lösung.

Die DGL lautet:
[mm] \bruch{d^4 W}{dx^4} + \kappa^4 i^2 (1+ \alpha) \bruch{d^2 W}{dx^2} - \kappa (1 - \kappa^4 i^4 \alpha) W = 0 [/mm]

Die Randbedingungen sind
[mm] \bruch{d^2 W(0)}{dx^2}=\bruch{d^3 W(0)}{dx^3}=0 [/mm]
und
[mm] \bruch{d^2 W(l)}{dx^2}=\bruch{d^3 W(l)}{dx^3}=0 [/mm]
Dies sollte einem Balken mit beidseitig freien Enden entsprechen. (Querkraft und Moment sind an den Balkenenden 0.)

Für einen beidseitig gelenkig gelagerten Balken habe ich bereits eine Ansatzfunktion. Hier lauten die Randbedingungen:
[mm] \bruch{W(0)}{dx}=\bruch{d^2 W(0)}{dx^2}=0 [/mm] und [mm] \bruch{d W(l)}{dx}=\bruch{d^2 W(l)}{dx^2}=0 [/mm]
Diese werden erfüllt von der Funktion [mm] W_k(x) = B_k sin\bruch{k \pi x}{l}, k = 1,2,... [/mm]

Setze ich diese in die DGL ein, kann ich abhägig von k nach [mm]\kappa[/mm] auflösen und so die Eigenwerte ermitteln. Gleiches will ich nun auch für den Balken mit freien Enden, doch leider finde ich keine geeignete Ansatzfunktion, die die DGL löst und deren zweite und dritte Ableitungen zwei gleiche Nullstellen haben.

Ich habe auch schon versucht mit Wolframalpha auf eine allgemeine Lösung zu kommen. Dazu habe ich die Vorfaktoren der DGL zusammengefasst, so dass sie lautet:
[mm] \bruch{d^4y(x)}{dx^4}+a*\bruch{d^2y(x)}{dx^2}-b*y(x)=0 [/mm]

Davon gibt wolframalpha folgendes als Lösung aus:
[mm] y(x) = c_1 e^\bruch{x \wurzel{-\wurzel{a^2+4 b}-a}}{\wurzel{2}} + c_2 e^\bruch{-x \wurzel{-\wurzel{a^2+4 b}-a}}{\wurzel{2}} + c_3 e^\bruch{x \wurzel{\wurzel{a^2+4 b}-a}}{\wurzel{2}} + c_4 e^\bruch{-x \wurzel{\wurzel{a^2+4 b}-a}}{\wurzel{2}}[/mm]

Dies kann man meiner Meinung nach mit [mm] cosh(x)=\bruch{e^x+e^{-x}}{2} [/mm] zu zwei cosh-Termen umformen. Wahrscheinlich müsste man das dann Ableiten und die Randbedingungen einsetzen, um auf die Konstanten a und b zu kommen. Allerdings erscheint mir dies ziemlich kompliziert und ich bin mir gar nicht mehr sicher, ob das alles so noch richtig ist. Auch weiß ich gar nicht, ob ich das abgeleitet bekomme. Daher würde mich interessieren, ob mir jemand weiterhelfen kann? Ich hatte gehofft die Eigenfrequenzen für die freien Enden wären nicht groß schwerer als die mit den gelenkig gelagerten Enden.

Vielen Dank schon mal für alle Hilfe!

        
Bezug
Lösen DGL mit Randbedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:53 Do 16.01.2014
Autor: helicopter

Hallo,

Ich nehme an dass  $ [mm] \kappa^4 i^2 [/mm] (1+ [mm] \alpha)$ [/mm] und [mm] $\kappa [/mm] (1 - [mm] \kappa^4 i^4 \alpha)$ [/mm]  Konstanten sind.
Versuche es mit dem Exponentialansatz:
$ [mm] W(x)=e^{\lambda{}x} [/mm] $, setze ein und teile die Gleichung durch [mm] $e^{\lambda{}x}$ [/mm]

Ich habe das nicht nachgerechnet aber es müsste funktionieren.

Gruß helicopter

Bezug
                
Bezug
Lösen DGL mit Randbedingungen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 08:23 Fr 17.01.2014
Autor: brockerdocker

Hallo helicopter,

erstmal vielen Dank für die schnelle Rückmeldung! Bezüglich der Konstanten hast du recht. Vom Prinzip her handelt es sich bei der DGL um folgende Gleichung:

$ [mm] \bruch{d^4y(x)}{dx^4}+a\cdot{}\bruch{d^2y(x)}{dx^2}-b\cdot{}y(x)=0 [/mm] $

Deinen Ansatz hab ich jetzt mal ausprobiert und siehe da, ich komme genau auf das Ergebnis, was wolframalpha.com auch ausgespuckt hat ;)

$ y(x) = [mm] c_1 e^\bruch{x \wurzel{-\wurzel{a^2+4 b}-a}}{\wurzel{2}} [/mm] + [mm] c_2 e^\bruch{-x \wurzel{-\wurzel{a^2+4 b}-a}}{\wurzel{2}} [/mm] + [mm] c_3 e^\bruch{x \wurzel{\wurzel{a^2+4 b}-a}}{\wurzel{2}} [/mm] + [mm] c_4 e^\bruch{-x \wurzel{\wurzel{a^2+4 b}-a}}{\wurzel{2}} [/mm] $

Sehe ich es richtig, dass ich diese Gleichung ableiten und die entsprechenden Randbedingungen einsetzen muss um die Konstanten herauszubekommen?

Meine Randbedingungen wären ja
$ [mm] \bruch{d^2 W(0)}{dx^2}=\bruch{d^3 W(0)}{dx^3}=0 [/mm] $
und
$ [mm] \bruch{d^2 W(l)}{dx^2}=\bruch{d^3 W(l)}{dx^3}=0 [/mm] $

Eine spezielle Lösung für einen Satz Randbedingungen kenne ich ja bereits. Vielleicht kann ich mit der allgemeinen Lösung zuerst versuchen auf diese zu kommen.

Ich weiß ja, dass die Randbedingungen:
$ [mm] \bruch{W(0)}{dx}=\bruch{d^2 W(0)}{dx^2}=0 [/mm] $ und $ [mm] \bruch{d W(l)}{dx}=\bruch{d^2 W(l)}{dx^2}=0 [/mm] $ zu der Lösung $ [mm] W_k(x) [/mm] = [mm] B_k sin\bruch{k \pi x}{l}, [/mm] k = 1,2,... $ führen.

Vielleicht kann mir jemand erklären, wie man das hinbekommt, dann bekomme ich eventuell meine Randbedingungen ja selber hin?

Bezug
                        
Bezug
Lösen DGL mit Randbedingungen: Antwort
Status: (Antwort) fertig Status 
Datum: 14:26 Fr 17.01.2014
Autor: helicopter


> Hallo helicopter,
>  
> erstmal vielen Dank für die schnelle Rückmeldung!
> Bezüglich der Konstanten hast du recht. Vom Prinzip her
> handelt es sich bei der DGL um folgende Gleichung:
>  
> [mm]\bruch{d^4y(x)}{dx^4}+a\cdot{}\bruch{d^2y(x)}{dx^2}-b\cdot{}y(x)=0[/mm]
>  
> Deinen Ansatz hab ich jetzt mal ausprobiert und siehe da,
> ich komme genau auf das Ergebnis, was wolframalpha.com auch
> ausgespuckt hat ;)
>  
> [mm]y(x) = c_1 e^\bruch{x \wurzel{-\wurzel{a^2+4 b}-a}}{\wurzel{2}} + c_2 e^\bruch{-x \wurzel{-\wurzel{a^2+4 b}-a}}{\wurzel{2}} + c_3 e^\bruch{x \wurzel{\wurzel{a^2+4 b}-a}}{\wurzel{2}} + c_4 e^\bruch{-x \wurzel{\wurzel{a^2+4 b}-a}}{\wurzel{2}}[/mm]
>  
> Sehe ich es richtig, dass ich diese Gleichung ableiten und
> die entsprechenden Randbedingungen einsetzen muss um die
> Konstanten herauszubekommen?

Ja, du erhältst 4 Gleichungen mit denen du die 4 unbekannten bestimmen kannst.

> Meine Randbedingungen wären ja
>  [mm]\bruch{d^2 W(0)}{dx^2}=\bruch{d^3 W(0)}{dx^3}=0[/mm]
>  und
>  [mm]\bruch{d^2 W(l)}{dx^2}=\bruch{d^3 W(l)}{dx^3}=0[/mm]
>  
> Eine spezielle Lösung für einen Satz Randbedingungen
> kenne ich ja bereits. Vielleicht kann ich mit der
> allgemeinen Lösung zuerst versuchen auf diese zu kommen.
>  
> Ich weiß ja, dass die Randbedingungen:
>  [mm]\bruch{W(0)}{dx}=\bruch{d^2 W(0)}{dx^2}=0[/mm] und [mm]\bruch{d W(l)}{dx}=\bruch{d^2 W(l)}{dx^2}=0[/mm]
> zu der Lösung [mm]W_k(x) = B_k sin\bruch{k \pi x}{l}, k = 1,2,...[/mm]
> führen.
>  
> Vielleicht kann mir jemand erklären, wie man das
> hinbekommt, dann bekomme ich eventuell meine
> Randbedingungen ja selber hin?

Ich habe es jetzt nicht nachgerechnet aber ich vermute dass einfach benutzt wurde dass [mm] $e^{i\phi}=\cos\phi{}+i\sin\phi$ [/mm] benutzt wurde.
Probier es Mal aus und setze deine Randbedingungen ein.

Gruß helicopter

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]