matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenGewöhnliche DifferentialgleichungenLösung einer DGL
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Gewöhnliche Differentialgleichungen" - Lösung einer DGL
Lösung einer DGL < gewöhnliche < Differentialgl. < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung einer DGL: Ansatz
Status: (Frage) beantwortet Status 
Datum: 17:33 Mo 23.07.2007
Autor: Goldener_Sch.

Aufgabe
(entsprichte der Fragestellung!)

Hallo Leute!
...und einen schönen Tag!



Ich habe eine Frage zum Lösen einer DGL, welche den Aufladungsvorgang eines Konsators beschreibt.
Das ist die DGL:
[mm]U_0=\left \bruch{Q}{C} \right+R*Q'[/mm]
Nach der Division durch [mm]R[/mm] ergibt sich meiner Meinung nach eine lineare inhomgene DGL, welche so aussieht:
[mm]Q'+Q*\left \bruch{1}{R*C} \right=\left \bruch{U_0}{R} \right[/mm]

Nun ist die allgemeien Lösung doch:

[mm]Q_a=A*e^{-\left \bruch{t}{R*C} \right}[/mm]

Um die partikuläre Lösung zu erhalten, fürhe ich zunächste die Variation der Konstanten duch:

[mm]A(t)=\integral_{}^{}\left \bruch{U_0}{R} \right*e^{\left \bruch{t}{R*C} \right} \, dt=C*U*e^{\left \bruch{t}{R*C} \right}[/mm]

Und somit die partikuläre Lösung:

[mm]Q_p=C*U[/mm]

Und damit als Lösung:

[mm]Q=A*e^{-\left \bruch{t}{R*C} \right}+C*U[/mm]

...wobei noch mit einer sinnvollen Anfangsbedingung [mm]A[/mm] zu bestimmen ist.
Dabei denke ich an sowas wie [mm]Q(0)=0[/mm].

Jedoch würde ich gerne euch fragen, wo das, was ich gerechnet habe unter der Vorraussetzung, dass die DGL richtig ist, überhaupt richtig ist.
Wenn jemand mir darüberhinaus noch sagen kann, ob der Ansatz überhaupt korrekt ist, wäre das sehr nett!


Schon mal ein großes Danke im Vorraus!



Mit lieben Grüßen

Goldener Schnitt


        
Bezug
Lösung einer DGL: Aufladevorgang
Status: (Antwort) fertig Status 
Datum: 17:43 Mo 23.07.2007
Autor: Infinit

Hallo Goldener Schnitt,
Deine Rechnung kann ich soweit nachvollziehen und auch die Dimensionen scheinen zu stimmen. Schaltungstechnisch gehört zu dieser DGL eine Batterie mit der Spannung [mm] U_0 [/mm], die über einen Widerstand den Kondensator auflädt. Hierzu wird zum Zeitpunkt [mm] t = 0 [/mm] ein Schalter geschlossen, der in Serie zur Batterie liegt. Was Du bestimmst, ist die aktuelle Ladung im Kondensator.
Viele Grüße,
Infinit

Bezug
                
Bezug
Lösung einer DGL: Nachfrage
Status: (Frage) beantwortet Status 
Datum: 18:37 Mo 23.07.2007
Autor: Goldener_Sch.

Aufgabe
(bezieht sich auf Vorraussgegangenes!)

Hallo Infinit!
...und einen schönen Abend sowie danke für deine Antwort!


Ich möchte jedoch mal hinterherfrage, im Bezug auf die Konstante.
Mit der Anfangsbedingung [mm]Q(0)=0[/mm] ergibt sich dann:

[mm]Q=C*U_0*(1-e^{-\left \bruch{t}{R*C} \right})[/mm]

Ist das so korrekt?


Es wäre echt lieb, wenn diese mal jemand überprüfen könnte!

Danke!



Mit lieben Grüßen

Goldener Schnitt



Bezug
                        
Bezug
Lösung einer DGL: Okay
Status: (Antwort) fertig Status 
Datum: 19:19 Mo 23.07.2007
Autor: Infinit

Hallo Goldener Schnitt,
die Ladung ist ja zeitabhängig, also ein [mm] Q(t) [/mm]und wenn Du den Zeitnullpunkt einsetzt, kommt genau [mm] Q(0) = 0 [/mm] dabei raus. Als Gegenkontrolle, dass man richtig gerechnet hat, kann man schnell solche Randbedingugen einsetzen.
Viele Grüße,
Infinit

Bezug
                                
Bezug
Lösung einer DGL: Nachtrag
Status: (Frage) beantwortet Status 
Datum: 23:40 Mo 23.07.2007
Autor: Goldener_Sch.

Aufgabe
(Bezieht sich auf Vorrangegangenes!)

Hallo Infinit!

Noch einmal danke für deine Antwort!


Zunächst mal ist mir aufgefallen, dass man [mm]U_0*C=Q_0[/mm] setzen kann. Dann stimmt die Gleichung mit einer überein, die ich auf einer anderen Internetseite gefunden habe. Es entsteht:
[mm]Q=C*U_0*(1-e^{-\left \bruch{t}{R\cdot{}C} \right})=Q_0*(1-e^{-\left \bruch{t}{R\cdot{}C} \right})[/mm]

Nach dividieren durch [mm]C[/mm] erhält man sogar die Zeit-Spannungsfunktion:
[mm]U=U_0*(1-e^{-\left \bruch{t}{R\cdot{}C} \right})[/mm]

Bildet man die Ableitung nach der Zeit erhält man auch noch die Stromstärke-Zeit Funktion zu (entwas schöner aufgeschrieben;-)):
[mm]I(t)=\left \bruch{Q_0}{R*C} \right*e^{-\left \bruch{t}{R*C} \right}[/mm]


Somit ist die gesuchte Funktion gefunden, cool:-)!
Tut mir leid, dass dieser Artikel als Frage gekenzeichnet ist, das war ein Versehen!



Mit lieben Grüßen

Goldener Schnitt

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Gewöhnliche Differentialgleichungen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]