matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStochastikLösung einer Ungleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Stochastik" - Lösung einer Ungleichung
Lösung einer Ungleichung < Stochastik < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung einer Ungleichung: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 18:44 Do 27.10.2005
Autor: Wimme

Hallo!!
ich habe hier folgende Aufgabe:
Zum Anbringen einer Holzlatte werden 72 Nägel benötigt. Diese Nägel werden in Päkchen zu je 20 Nägeln verkauft. Wie viele Pälchen muss man kaufen, damit die Nägel zu 98% reichen?
Wenn er bedenkt, dass er jeden 6.Nagel verbiegt!

P(x [mm] \ge72) \ge0.98 [/mm]

das habe ich dann gemacht zu:

[mm] \phi(\frac{71.5-5/6*n}{\sqrt{5/36*n}}) [/mm] - [mm] \phi(\frac{-0.5-5/6*n}{\sqrt{5/36*n}}) \geq [/mm] -0.02

nun weiß ich nicht, wie ich das weiter auflösen kann!

Wäre für jede Hilfe dankbar!

Gruß,
Wimme

Ich habe diese Frage auch in folgenden Foren auf anderen Internetseiten gestellt:
http://www.matheboard.de/thread.php?threadid=22787

        
Bezug
Lösung einer Ungleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:52 Do 27.10.2005
Autor: Zwerglein

Hi, Wimme,

> Hallo!!
>  ich habe hier folgende Aufgabe:
>  Zum Anbringen einer Holzlatte werden 72 Nägel benötigt.
> Diese Nägel werden in Päkchen zu je 20 Nägeln verkauft. Wie
> viele Pälchen muss man kaufen, damit die Nägel zu 98%
> reichen?
>  Wenn er bedenkt, dass er jeden 6.Nagel verbiegt!
>  
> P(x [mm]\ge72) \ge0.98[/mm]
>  
> das habe ich dann gemacht zu:
>  
> [mm]\phi(\frac{71.5-5/6*n}{\sqrt{5/36*n}})[/mm] -
> [mm]\phi(\frac{-0.5-5/6*n}{\sqrt{5/36*n}}) \geq[/mm] -0.02
>  

Diese Umformung ist reichlich seltsam!

Aus P(X [mm] \ge [/mm] 72) [mm] \ge [/mm] 0,98

folgt doch erst mal:

1 - P(X [mm] \le [/mm] 71) [mm] \ge [/mm] 0,98

oder: P(X [mm] \le [/mm] 71) [mm] \le [/mm] 0,02

Und nun  verwenden wir die N-Vtlg. als Näherung (was wegen npq > 9 auch geht!):

[mm] \Phi(\bruch{71,5 - \bruch{5}{6}*n}{\wurzel{\bruch{5}{36}*n}}) \le [/mm] 0,02

oder:

[mm] \Phi(\bruch{-71,5 + \bruch{5}{6}*n}{\wurzel{\bruch{5}{36}*n}}) \ge [/mm] 0,98

Tafelwerk:

[mm] \bruch{-71,5 + \bruch{5}{6}*n}{\wurzel{\bruch{5}{36}*n}} \ge [/mm] 2,06

Substitution z = [mm] \wurzel{n} [/mm]
ergibt:
[mm] \bruch{5}{6}z^{2} [/mm] - [mm] 2,06*\wurzel{\bruch{5}{36}}*z [/mm] - 71,5 [mm] \ge [/mm] 0

Naja: Und diese quadratische Ungleichung musst Du nun lösen!
(PS: Vergiss' die Rücksubstitution n = [mm] z^{2} [/mm] nicht!
Mein Ergebnis: Man braucht mindestens 95 Nägel, also mindestens 5 Päckchen.)

mfG!
Zwerglein




Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]