matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDifferenzialrechnungLösung unklar...
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Differenzialrechnung" - Lösung unklar...
Lösung unklar... < Differenzialrechnung < Analysis < Oberstufe < Schule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösung unklar...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:40 So 11.10.2009
Autor: drahmas

Aufgabe
y= (7x + 5)^11

Warum ergibt sich daraus y´= 11·(7x + 5) · 7 und nicht y'=(77x+0)^10

Dass man das mit y'=11*(...) anschreiben kann, leuchtet mir ja noch ein, aber warum wird das noch mit 7 multipliziert?

Beste Grüße...

        
Bezug
Lösung unklar...: Antwort
Status: (Antwort) fertig Status 
Datum: 14:50 So 11.10.2009
Autor: schachuzipus

Hallo Andi,

> y= (7x + 5)^11
>  Warum ergibt sich daraus y´= 11·(7x + 5) · 7 [notok] und nicht
> y'=(77x+0)^10 [notok]

Das stimmt beides nicht!

Hier hast du eine verkettete Funktion $y(x)=f(g(x))$ mit [mm] $f(z)=z^{11}$ [/mm] und $g(x)=7x+5$

Die musst du gem. Kettenregel ableiten: [mm] $y'(x)=\left[f(g(x))\right]^{ \ '}=\underbrace{f'(g(x))}_{\text{äußere Ableitung}}\cdot{}\underbrace{g'(x)}_{\text{innere Ableitung}}=\underbrace{11\cdot(7x+5)^{11-1}}_{\text{äußere Ableitung}}\cdot{}\underbrace{7}_{\text{innere Ableitung}}$ [/mm]

[mm] $=77\cdot{}(7x+5)^{10}$ [/mm]

>  
> Dass man das mit y'=11*(...) anschreiben kann, leuchtet mir
> ja noch ein,

Das ist nicht richtig, schaue dir die Potenzregel für das Ableiten nochmal genau an!

> aber warum wird das noch mit 7 multipliziert?

Das ist die innere Ableitung (siehe oben)

>  
> Beste Grüße...

LG

schachuzipus

Bezug
        
Bezug
Lösung unklar...: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 11:45 Mo 12.10.2009
Autor: drahmas

Aufgabe
[mm] y=2\wurzel[3]{x^{2}}+\wurzel[5]{(2x)^2} [/mm]

Hallo,

okay, das habe ich verstanden, danke.
Habe noch eine Frage zu einer anderen Aufgabe.
Wie ich [mm] 2\wurzel[3]{x^{2}} [/mm] differenziere verstehe ich, aber bei [mm] \wurzel[5]{(2x)^2} [/mm] komme ich nicht weiter. Laut Lösung sollte [mm] \bruch{2\wurzel[5]{2}}{5}x^{-\bruch{3}{5}} [/mm] herauskommen. Aber we komme ich auf das? Ich forme zunächst mit [mm] \wurzel[/mm] [m][mm] {a^n} [/mm] = [mm] a^{\bruch{n}{m}} [/mm] um und bekomme [mm] (2x)^\bruch{2}{5} [/mm] heraus. Differenziert ergäbe dies ja [mm] \bruch{4}{5}x^{-\bruch{3}{5}}. [/mm]
Verstehe ich nicht ganz leider...

Bezug
                
Bezug
Lösung unklar...: Korrektur
Status: (Antwort) fertig Status 
Datum: 11:52 Mo 12.10.2009
Autor: Roadrunner

Hallo drahmas!


> Differenziert ergäbe dies ja [mm]\bruch{4}{5}x^{-\bruch{3}{5}}.[/mm]

[notok] Die Ableitung lautet:
[mm] $$\bruch{4}{5}*\left(\red{2}*x\right)^{-\bruch{3}{5}}$$ [/mm]

Oder Du formst voher um:
[mm] $$(2*x)^{\bruch{2}{5}} [/mm] \ = \ [mm] 2^{\bruch{2}{5}}*x^{\bruch{2}{5}}$$ [/mm]

Gruß vom
Roadrunner


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Differenzialrechnung"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]