matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-SonstigesLösungen der Gleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Sonstiges" - Lösungen der Gleichung
Lösungen der Gleichung < Sonstiges < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lösungen der Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:01 Fr 27.07.2007
Autor: CingChris

Also wir sollen alle Lösungen der Gleichung [mm] (z-2+i)^3 [/mm] = 8i bestimmen. Es soll angenommen werden zum Angang, das w = z-2+i ist. So dann hab ich w = e^(i [mm] *\bruch{\pi}{6} [/mm] stimmt das erst mal. Und wie komm ich auf die Lösungen  indem ich k einführe ? Bitte helft mir.

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Lösungen der Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:07 Fr 27.07.2007
Autor: Hund

Hallo,

deine Gleichung lautet ja:
(z-2+i)³=8i

Jetzt bestimmst du die Lösung der Gleichung w³=8i. Dann gilt:
z-2+i=w
z=2-i+w

Also musst du nur noch w bestimmen.

Ich hoffe, es hat dir geholfen.

Gruß
Hund

Bezug
                
Bezug
Lösungen der Gleichung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:20 Fr 27.07.2007
Autor: CingChris

Also das is mir soweit klar, aber [mm] w^3= e^i*(\bruch{\pi}{2}) +2k\pi) [/mm] oder ? So jetz muss ich etwa die rechte Seite hoch [mm] \bruch{1}{3} [/mm] rechnen um w rauszubekommen das ergibt dann w [mm] =e^i(\bruch{\pi}{6} +\bruch{\2pi}{3}) [/mm] oder ? und jetz lass ich doch einfach k von 0 bis 2 aufen und das sind doch meine Lösungen oder ? Gruß

Bezug
                        
Bezug
Lösungen der Gleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 19:52 Fr 27.07.2007
Autor: Somebody


> Also das is mir soweit klar, aber [mm]w^3= e^i*(\bruch{\pi}{2}) +2k\pi)[/mm]
> oder ? So jetz muss ich etwa die rechte Seite hoch
> [mm]\bruch{1}{3}[/mm] rechnen um w rauszubekommen das ergibt dann
> [mm]w=e^i(\bruch{\pi}{6} +\bruch{\2 pi}{3})[/mm] oder ?

Beinahe: hier muss $k$ aber natürlich noch drin sein. Den Betrag [mm] $\sqrt[3]{8}=2$ [/mm] hast Du auch fallen lassen. Also besser wäre m.E.
[mm]\displaystyle w=2\cdot \mathrm{e}^{\mathrm{i}\Big(\frac{\pi}{6}+\frac{2k\pi}{3}\Big)},\; k\in\IZ[/mm]


>und jetz lass ich doch einfach k von 0 bis 2 laufen

Richtig.

> und das sind doch  meine Lösungen oder ?

Noch nicht ganz: diese $w$ sind nur die dritten Wurzel der rechten Seite [mm] $\mathrm{i}8$ [/mm] der ursprünglichen Gleichung. - Du brauchst aber [mm] $z=2-\mathrm{i}+w$. [/mm]


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]