matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraLokalisierung
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Algebra" - Lokalisierung
Lokalisierung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Lokalisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:20 So 28.06.2009
Autor: hopsie

Aufgabe
Sei M ein A-Modul $ [mm] \mathfrak{a}\subset [/mm] A $ ein Ideal. Zeige:
Ist $ [mm] M_{\mathfrak{m}} [/mm] = 0 $ für alle maximalen Ideale $ [mm] \mathfrak{m} \subset [/mm] A $ mit $ [mm] \mathfrak{a} \subset \mathfrak{m} [/mm] $, so ist $ M = [mm] \mathfrak{a}M [/mm] $

Hallo!

Ich hab zu Anfang schonmal eine ganz grundsätzliche Frage: Wie ist [mm] \mathfrak{a}M [/mm] definiert? Meine Vorschläge:
$ [mm] \mathfrak{a}M [/mm] = [mm] \left\{ \summe a_{i}m_{i}\ |\ a_{i} \in \mathfrak{a}\ m_{i} \in \mathfrak{m} \right\} [/mm] $ oder einfach nur
$ [mm] \mathfrak{a}M [/mm] = [mm] \left\{ am\ |\ a \in \mathfrak{a}\ m \in \mathfrak{m} \right\} [/mm] $

Abgesehen davon weiß ich nicht wirklich, wie ich anfange soll.
Ich versuchs mal:
also $ " [mm] \mathfrak{a}M \subseteq [/mm] M " $ gilt ja immer (unabhängig von meinen zwei Definitionen), oder? Denn wenn $ x [mm] \in \mathfrak{a}M \Rightarrow [/mm] x= [mm] \summe a_{i}m_{i} \in [/mm] M $ bzw. $ x=am [mm] \in [/mm] M $ , da M A-Modul.

Für $ "M [mm] \subseteq \mathfrak{a}M" [/mm] $ habe ich leider keine Ideen.
Wegen der Voraussetzung $ [mm] M_{\mathfrak{m}} [/mm] = 0 $ weiß ich, dass $ [mm] \bruch{m}{s} [/mm] = [mm] \bruch{0}{1} [/mm] $ für $ m [mm] \in [/mm] M $ und $ s [mm] \in [/mm] A [mm] \backslash \mathfrak{m}$ [/mm] , d.h. $ [mm] \forall [/mm] m [mm] \in [/mm] M : mv = 0 $ für ein $ v [mm] \in [/mm] A [mm] \backslash \mathfrak{m} [/mm] $ .
Hilft mir das irgendwie weiter?..

Für Ideen wär ich dankbar!

Grüße, hopsie

        
Bezug
Lokalisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 17:30 Mi 01.07.2009
Autor: felixf

Hallo!

> Sei M ein A-Modul [mm]\mathfrak{a}\subset A[/mm] ein Ideal. Zeige:
>  Ist [mm]M_{\mathfrak{m}} = 0[/mm] für alle maximalen Ideale
> [mm]\mathfrak{m} \subset A[/mm] mit [mm]\mathfrak{a} \subset \mathfrak{m} [/mm],
> so ist [mm]M = \mathfrak{a}M[/mm]
>
> Ich hab zu Anfang schonmal eine ganz grundsätzliche Frage:
> Wie ist [mm]\mathfrak{a}M[/mm] definiert? Meine Vorschläge:
>  [mm]\mathfrak{a}M = \left\{ \summe a_{i}m_{i}\ |\ a_{i} \in \mathfrak{a}\ m_{i} \in \mathfrak{m} \right\}[/mm]
> oder einfach nur
>  [mm]\mathfrak{a}M = \left\{ am\ |\ a \in \mathfrak{a}\ m \in \mathfrak{m} \right\}[/mm]

Man sollte es als ersteres Definieren; zweiteres klappt im Allgemeinen nicht (also das Resultat ist bzgl. der Addition nicht umbedingt abgeschlossen und somit kein Untermodul).

> Abgesehen davon weiß ich nicht wirklich, wie ich anfange
> soll.
>  Ich versuchs mal:
>  also [mm]" \mathfrak{a}M \subseteq M "[/mm] gilt ja immer
> (unabhängig von meinen zwei Definitionen), oder?

Genau.

> Denn wenn
> [mm]x \in \mathfrak{a}M \Rightarrow x= \summe a_{i}m_{i} \in M[/mm]
> bzw. [mm]x=am \in M[/mm] , da M A-Modul.
>  
> Für [mm]"M \subseteq \mathfrak{a}M"[/mm] habe ich leider keine
> Ideen.

Vielleicht kann man das ganze etwas abstrakter ansetzen. [mm] $\mathfrak{a} [/mm] M = M$ ist ja aequivalent zu $N := M / [mm] (\mathfrak{a} [/mm] M) = 0$. Du musst also zeigen, dass $N = 0$ ist.

Dazu reicht es ja zu zeigen, dass [mm] $N_\mathfrak{m} [/mm] = 0$ ist fuer alle maximalen Ideale [mm] $\mathfrak{m}$. [/mm] (Dies hattet ihr schon, oder?)

Versuch das doch mal zu zeigen.

LG Felix


Bezug
                
Bezug
Lokalisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 00:10 Do 02.07.2009
Autor: hopsie

Hallo!
Vielen Dank für die Hinweise!

> Vielleicht kann man das ganze etwas abstrakter ansetzen.
> [mm]\mathfrak{a} M = M[/mm] ist ja aequivalent zu [mm]N := M / (\mathfrak{a} M) = 0[/mm].
> Du musst also zeigen, dass [mm]N = 0[/mm] ist.
>  
> Dazu reicht es ja zu zeigen, dass [mm]N_\mathfrak{m} = 0[/mm] ist
> fuer alle maximalen Ideale [mm]\mathfrak{m}[/mm]. (Dies hattet ihr
> schon, oder?)

Ja, das hatten wir.

>  
> Versuch das doch mal zu zeigen.

OK. Also so ganz stimmt das glaub ich noch nicht, aber trotzdem:
[mm] N_{\mathfrak{m}}=\{ \bruch{\overline{m}}{s} \ | \ \overline{m} \in M/\mathfrak{a}M, s \in A \backslash \mathfrak{m} \}. [/mm]
Sei also [mm] \bruch{\overline{m}}{s} \in N_{\mathfrak{m}} \Rightarrow \bruch{\overline{m}}{s} [/mm] = [mm] \bruch{m+\mathfrak{a}M}{s} [/mm] = ?? [mm] \bruch{m}{s} [/mm] + [mm] \bruch{\mathfrak{a}M}{s} [/mm] = [mm] \bruch{0}{1} [/mm] + [mm] \bruch{\mathfrak{a}M}{s} [/mm] = [mm] \bruch{\overline{0}}{1} [/mm]

Wann brauchen wir denn die Bedingung [mm] \mathfrak{a} \subseteq \mathfrak{m} [/mm] ?

>  

LG hospie

Bezug
                        
Bezug
Lokalisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 02:15 Do 02.07.2009
Autor: felixf

Hallo hopsie!

> > Vielleicht kann man das ganze etwas abstrakter ansetzen.
> > [mm]\mathfrak{a} M = M[/mm] ist ja aequivalent zu [mm]N := M / (\mathfrak{a} M) = 0[/mm].
> > Du musst also zeigen, dass [mm]N = 0[/mm] ist.
>  >  
> > Dazu reicht es ja zu zeigen, dass [mm]N_\mathfrak{m} = 0[/mm] ist
> > fuer alle maximalen Ideale [mm]\mathfrak{m}[/mm]. (Dies hattet ihr
> > schon, oder?)
>  Ja, das hatten wir.

Gut.

> > Versuch das doch mal zu zeigen.
>  
> OK. Also so ganz stimmt das glaub ich noch nicht, aber
> trotzdem:
>  [mm]N_{\mathfrak{m}}=\{ \bruch{\overline{m}}{s} \ | \ \overline{m} \in M/\mathfrak{a}M, s \in A \backslash \mathfrak{m} \}.[/mm]

Soweit ok.

> Sei also [mm]\bruch{\overline{m}}{s} \in N_{\mathfrak{m}} \Rightarrow \bruch{\overline{m}}{s}[/mm]
> = [mm]\bruch{m+\mathfrak{a}M}{s}[/mm] = ?? [mm]\bruch{m}{s}[/mm] +
> [mm]\bruch{\mathfrak{a}M}{s}[/mm] = [mm]\bruch{0}{1}[/mm] +
> [mm]\bruch{\mathfrak{a}M}{s}[/mm] = [mm]\bruch{\overline{0}}{1}[/mm]

Das stimmt so nicht.

> Wann brauchen wir denn die Bedingung [mm]\mathfrak{a} \subseteq \mathfrak{m}[/mm]
> ?

Du hast zwei Faelle: [mm] $\mathfrak{a} \subseteq \mathfrak{m}$ [/mm] und [mm] $\mathfrak{a} \not\subseteq \mathfrak{m}$. [/mm]

Im ersten Fall hast du nach Voraussetzung [mm] $M_\mathfrak{m} [/mm] = 0$; das musst du jetzt benutzen. Weisst du z.B. dass $N = [mm] M_\mathfrak{m} [/mm] / [mm] (\mathfrak{a} M)_\mathfrak{m}$ [/mm] ist? In dem Fall bist du sofort fertig.

Im zweiten Fall gibt es ein Element $t [mm] \in \mathfrak{a} \setminus \mathfrak{m}$. [/mm] Fuer dieses ist [mm] $\frac{t}{1}$ [/mm] in [mm] $A_\mathfrak{m}$ [/mm] invertierbar. Das musst du jetzt geschickt nutzen.

LG Felix


Bezug
                                
Bezug
Lokalisierung: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:50 Do 02.07.2009
Autor: hopsie


> Hallo hopsie!
>  
> > > Vielleicht kann man das ganze etwas abstrakter ansetzen.
> > > [mm]\mathfrak{a} M = M[/mm] ist ja aequivalent zu [mm]N := M / (\mathfrak{a} M) = 0[/mm].
> > > Du musst also zeigen, dass [mm]N = 0[/mm] ist.
>  >  >  
> > > Dazu reicht es ja zu zeigen, dass [mm]N_\mathfrak{m} = 0[/mm] ist
> > > fuer alle maximalen Ideale [mm]\mathfrak{m}[/mm]. (Dies hattet ihr
> > > schon, oder?)

> > > Versuch das doch mal zu zeigen.
>  >  
> > OK. Also so ganz stimmt das glaub ich noch nicht, aber
> > trotzdem:
>  >  [mm]N_{\mathfrak{m}}=\{ \bruch{\overline{m}}{s} \ | \ \overline{m} \in M/\mathfrak{a}M, s \in A \backslash \mathfrak{m} \}.[/mm]
>  
> Soweit ok.
>  
> > Sei also [mm]\bruch{\overline{m}}{s} \in N_{\mathfrak{m}} \Rightarrow \bruch{\overline{m}}{s}[/mm]
> > = [mm]\bruch{m+\mathfrak{a}M}{s}[/mm] = ?? [mm]\bruch{m}{s}[/mm] +
> > [mm]\bruch{\mathfrak{a}M}{s}[/mm] = [mm]\bruch{0}{1}[/mm] +
> > [mm]\bruch{\mathfrak{a}M}{s}[/mm] = [mm]\bruch{\overline{0}}{1}[/mm]
>  
> Das stimmt so nicht.

Das dacht ich mir schon...

>  
> > Wann brauchen wir denn die Bedingung [mm]\mathfrak{a} \subseteq \mathfrak{m}[/mm]
> > ?
>  
> Du hast zwei Faelle: [mm]\mathfrak{a} \subseteq \mathfrak{m}[/mm]
> und [mm]\mathfrak{a} \not\subseteq \mathfrak{m}[/mm].
>  
> Im ersten Fall hast du nach Voraussetzung [mm]M_\mathfrak{m} = 0[/mm];
> das musst du jetzt benutzen. Weisst du z.B. dass [mm]N = M_\mathfrak{m} / (\mathfrak{a} M)_\mathfrak{m}[/mm]
> ist? In dem Fall bist du sofort fertig.

Ne, das hatten wir leider nicht.
Wozu brauchen wir denn die Betrachtung des zweiten Falls? Nach Voraussetzung soll ja [mm] \mathfrak{a} \subseteq \mathfrak{m} [/mm] sein.

>  
> Im zweiten Fall gibt es ein Element [mm]t \in \mathfrak{a} \setminus \mathfrak{m}[/mm].
> Fuer dieses ist [mm]\frac{t}{1}[/mm] in [mm]A_\mathfrak{m}[/mm] invertierbar.
> Das musst du jetzt geschickt nutzen.
>  

Ich komme trotz deiner Erklärungen leider kein Stück weiter...
Ich muss mir ein beliebiges [mm] \bruch{\overline{m}}{s} \in N_{\mathfrak{m}} [/mm] nehmen, und zeigen, dass dies [mm] \bruch{\overline{0}}{1} [/mm] ist, richtig? Und dazu muss ich verwenden, dass [mm] \mathfrak{a} \subseteq \mathfrak{m} [/mm] ist... [keineahnung] Dabei geb ich mir echt Mühe... :(

LG hopsie

Bezug
                                        
Bezug
Lokalisierung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:53 Do 02.07.2009
Autor: felixf

Hallo hopsie!

> > > Wann brauchen wir denn die Bedingung [mm]\mathfrak{a} \subseteq \mathfrak{m}[/mm]
> > > ?
>  >  
> > Du hast zwei Faelle: [mm]\mathfrak{a} \subseteq \mathfrak{m}[/mm]
> > und [mm]\mathfrak{a} \not\subseteq \mathfrak{m}[/mm].
>  >  
> > Im ersten Fall hast du nach Voraussetzung [mm]M_\mathfrak{m} = 0[/mm];
> > das musst du jetzt benutzen. Weisst du z.B. dass [mm]N = M_\mathfrak{m} / (\mathfrak{a} M)_\mathfrak{m}[/mm]
> > ist? In dem Fall bist du sofort fertig.
>  
> Ne, das hatten wir leider nicht.

Das zu zeigen ist nicht so schwer.

>  Wozu brauchen wir denn die Betrachtung des zweiten Falls?
> Nach Voraussetzung soll ja [mm]\mathfrak{a} \subseteq \mathfrak{m}[/mm]
> sein.

Lies dir die Aufgabenstellung nochmal ganz genau durch. Wo steht da, dass [mm] $\mathfrak{a}$ [/mm] in jedem maximalen Ideal enthalten ist?

> > Im zweiten Fall gibt es ein Element [mm]t \in \mathfrak{a} \setminus \mathfrak{m}[/mm].
> > Fuer dieses ist [mm]\frac{t}{1}[/mm] in [mm]A_\mathfrak{m}[/mm] invertierbar.
> > Das musst du jetzt geschickt nutzen.
>  
> Ich komme trotz deiner Erklärungen leider kein Stück
> weiter...
>  Ich muss mir ein beliebiges [mm]\bruch{\overline{m}}{s} \in N_{\mathfrak{m}}[/mm]
> nehmen, und zeigen, dass dies [mm]\bruch{\overline{0}}{1}[/mm] ist,
> richtig? Und dazu muss ich verwenden, dass [mm]\mathfrak{a} \subseteq \mathfrak{m}[/mm]
> ist... [keineahnung] Dabei geb ich mir echt Mühe... :(

Es ist [mm] $\frac{m}{s} [/mm] = [mm] \frac{t}{1} \cdot \frac{m}{s t} \in (\mathfrak{a} M)_{\mathfrak{m}}$, [/mm] wenn $t [mm] \in \mathfrak{a}$ [/mm] und $t [mm] \not\in \mathfrak{m}$ [/mm] ist.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]