matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisMajorantenkriterium
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Uni-Analysis" - Majorantenkriterium
Majorantenkriterium < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Majorantenkriterium: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 11:00 So 15.01.2006
Autor: Doreen

Aufgabe
Man untersuche die folgenden Reihen auf Konvergenz

[mm] \summe_{k=1}^{ \infty} \bruch{k+5}{3k^{3} -2k +1} [/mm]

(Hinweis: Majoranten-Kriterium)

Hallo,


in der Vorlesung haben wir uns aufgeschrieben:

Es sei  [mm] \summe_{k=1}^{ \infty} a_{k} [/mm] vorgegeben.

Gibt es eine konvergente Majorante, das ist eine konvergente
Reihe [mm] \summe_{k=1}^{ \infty} c_{k} [/mm] mit

[mm] |a_{k}| \le c_{k} [/mm] für alle k [mm] \in \IN, [/mm]

so konvergiert die Reihe [mm] \summe_{k=1}^{ \infty} a_{k} [/mm]

Dazu dann noch den Beweis...

Wie kann ich jetzt von der genannten Aufgabe aus auf das Majorantenkriterium schließen?

Woher soll ich mir jetzt ein [mm] summe_{k=1}^{ \infty} c_{k} [/mm] herzaubern? Mit dem ich dann so ein Vergleich machen kann...

Im Allgemeinen, wie handle ich mit so einer Aufgabe überhaupt...
und wie setze ich die Theorie in die Praxis (auf die obige Aufgabe) um...

Hierzu habe ich keine leiseste Ahnung, noch nicht mal eine "in den falschen Weg laufende" Vorstellung.

Für Hilfe und Beantwortung vielen Dank im Voraus.

Gruß Doreen

Diese Frage habe ich in keinen anderem Forum gestellt


        
Bezug
Majorantenkriterium: Antwort
Status: (Antwort) fertig Status 
Datum: 11:37 So 15.01.2006
Autor: piet.t

Hallo Doreen,

Konvergenzbeweise über Majorantenkriterium laufen im Endeffekt meistens auf eine ziemlich wüstes Abschätzen der einzelnen Summanden hinaus.
Die Kunst ist, durch scharfes Hinschauen ein passendes [mm] c_k [/mm] zu finden, das so gross ist, dass es sicher über [mm] a_k [/mm] liegt, aber auch noch so klein, dass es konvergiert.
In diesem Fall verhalten sich die Summanden für k [mm] \to \infty [/mm] ja wie irgendetwas von der Größenordnung [mm] 1/k^2, [/mm] also wollen wir doch versuchen, so eine Majorante zu konstruieren, d.h. die Summen im Zähler und Nenner zu eliminieren.
[mm]a_k = \frac{k+5}{3k^3-2k+1}[/mm]
Um den Wert zu vergrößern müssen wir den Zähler vergrößern oder den Nenner verkleinern. Da die ersten Summanden nicht interessieren (Konvergenz hängt ja nur vom Verhalten "für schließlich alle k" ab) können wir für [mm] k\ge [/mm] 5 die 5 im Zähler durch ein k ersetzen:
[mm]a_k \le \frac{k+k}{3k^3 - 2k+1} = \frac{2k}{3k^3 -2k +1}[/mm]
Damit wäre die Summe im Zähler erschlagen (die Gefahr ist aber immer, dass wir jetzt schon zu grob abgeschätzt haben und unsere Majorante schon nicht mehr kovergiert....)
Die +1 im Nenner könnte man einfach weglassen (macht den Wert nur größer), problematisch ist aber das -2k: wenn das wegfällt würde unsere Abschätzung wieder kleiner, das darf aber nicht sein. Also borgen wir uns von vorne ein [mm] k^3 [/mm] und schreiben:
[mm]a_k \le \frac{2k}{2k^3 + (k^3 -2k +1)}[/mm]
Die Klammer im Nenner wird aber für hinreichend großes k immer positiv sein (die genaue Grenze darst Du suchen wenn Du willst), d.h. weglassen der Klammer vergrößert wieder den Wert:
[mm]a_k \le \frac{2k}{2k^3} = \frac{1}{k^2}[/mm]
Also ist [mm] \sum \frac{1}{k^2} [/mm] eine Majorante und noch dazu konvergent,somit konvergiert auch unsere Ausgangsreihe.

Gruß

piet

P.S.: Die Betragsstriche in der Abschätzung konnten wir uns sparen, weil die [mm] a_k [/mm] ja sowieso alle positiv sind. Das sollte aber zumindest irgendwo erwähnt sein.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]