matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenDiskrete MathematikMaster Theorem Karatsuba
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Diskrete Mathematik" - Master Theorem Karatsuba
Master Theorem Karatsuba < Diskrete Mathematik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Master Theorem Karatsuba: Laufzeitbestimmung
Status: (Frage) überfällig Status 
Datum: 18:19 Mo 26.01.2009
Autor: wap

Aufgabe
Bestimme eine Schranke vom Algorithmus KARATSUBA mit T(n) = 3 [mm] T(\frac{n}{2}) [/mm] + [mm] \theta(n) [/mm]

Hallo, ich habe eine Frage zur Bestimmung einer Laufzeit mit Hilfe des Mastertheorems.

Ich würde gerne wissen wie ich bei dem Algorithmus Karatsuba, mit Hilfe des Mastertheorems schlussfolgern kann, welche Laufzeit ein Algorithmus hat. Ich habe mir dazu die Beispiele auf Wikipedia zu den 3 Fällen des Master Theorems bereits angeschaut und meine ich auch verstanden.

Jedoch kann ich bei einem Beispiel einen Schritt nicht ganz nachvollziehen.

Wir haben eine Gleichung gegeben mit

$ T(n) = 3 [mm] \cdot [/mm] T( [mm] \frac{n}{2} [/mm]  ) + [mm] \theta(n) [/mm] $

Daraus können wir die Parameter $ a = 3 , b = 2$ und die Funktion $ f(n) = [mm] \theta(n) [/mm] $ schlussfolgern.

Im nächsten Schritt berechnen wir $ [mm] n^{Log_a(b)} [/mm] = [mm] n^{ Log_3(2) }$ [/mm]

Jetzt muss ich herausfinden in welchem Fall wir uns befinden. Dabei kennen wir die 3 hier:

Fall 1) $ f(n) = [mm] \mathcal{O}(n^{Log_a(b) - \epsilon}) [/mm] , mit [mm] \epsilon [/mm] > 0 $
Fall 2) $ f(n) = [mm] \mathcal{O}(n^{Log_a(b)}) [/mm] $
Fall 3) $ f(n) = [mm] \mathcal{O}(n^{Log_a(b) + \epsilon }), [/mm] mit [mm] \epsilon [/mm] > 0 $

Ich weiss bereits, dass es sich bei diesem Beispiel um Fall 1 handelt.

Also muss ich ein Epsilon  so wählen, dass meine Funktion in $ [mm] \mathcal{O}(n^{Log_a(b) - \epsilon}) [/mm] $ liegt.

Jetzt würde ich gerne wissen, ob ich jetzt einfach "irgendein" $ [mm] \epsilon [/mm] $ wählen muss, welches groesser 0 ist?
Ich schaetze mal, man wählt im Regelfall $ [mm] \epsilon [/mm] = 1 $

Das würde heissen:

$ [mm] \theta(n) [/mm] = [mm] \mathcal{O}(n^{Log_3(2)- 1}) [/mm] $

Wie komme ich jetzt dahin, dass es Fall 1 ist?

Ich weiss dass $ [mm] \theta(n) [/mm] =  [mm] \mathcal{O}(n) [/mm] =  [mm] \Omega(n)$ [/mm] ist

müsste also den Limes bilden und zeigen, dass

$ [mm] \limes_{n\rightarrow\infty} [/mm] | [mm] \frac{ \theta(n) }{ \mathcal{O}(n^{Log_3(2)- 1}) } [/mm] | = c < [mm] \infty$ [/mm]

Nur hier weiss ich jetzt nicht wirklich weiter.
Im Endeffekt muss muss ich ja nur zeigen, dass meine Funktion $f(n)$ in  [mm] $\mathcal{O}(n^{Log_3(2)- 1})$ [/mm] um schlussfolgern zu können, dass die Laufzeit

$ T(n) = [mm] \theta(n^{log_2(3)} [/mm] $ beträgt.  

Wie macht ich das also?

Wäre dankbar für eine Antwort !

grüsse wap

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Master Theorem Karatsuba: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 18:22 Do 29.01.2009
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Diskrete Mathematik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]