matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrixexponential berechnen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Matrixexponential berechnen
Matrixexponential berechnen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrixexponential berechnen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:30 Mo 23.12.2013
Autor: Apfelchips

Aufgabe
Berechne:

[mm]e^\pmat{ 1 & 2 \\ 2 & 3 } [/mm]
 




Hallo allerseits,

zur Berechnung eines Matrixexponentials kenne ich zwei Möglichkeiten:

Man kann zum einen die Folgepotenzen einer Matrix berechnen (also [mm]A^2, A^3, A^4, ...[/mm]) und daraus [mm]A^n[/mm] ermitteln womit man auch schon gewonnen hat.

Wenn das nicht funktioniert gibt es auch die Möglichkeit  Eigenvektoren zur gegebenen Matrix zu ermitteln, daraus eine Matrix zusammenzubasteln und dann das Matrixexponential über [mm]e^A = P^{-1} * e^{P^{-1} * A * P} * P[/mm] zu berechnen.

Der erste Weg funktioniert offensichtlich nicht immer, beim zweiten bin ich mir nicht sicher: Für die gegebene Matrix sehen schon die Eigenwerte relativ unschön aus, sodass es mir davor graut das beschriebene Prozedere komplett durchzuziehen.

Gibt es da keinen anderen Weg?
Ich weiß bspw. noch, dass gilt: [mm]e^{B * A * B^{-1}} = B * e^A * B^{-1}[/mm] (was ein wenig an dem oben aufgeführten Weg 1 erinnert)
Um das anwenden zu können müsste ich aber natürlich erst einmal eine zweite Matrix B haben. Nur wie finde ich eine solche Matrix?

Ein frohes Fest und viele Grüße,
Apfelchips

        
Bezug
Matrixexponential berechnen: Antwort
Status: (Antwort) fertig Status 
Datum: 12:40 Mo 23.12.2013
Autor: schachuzipus

Hallo Apfelchips,

> Berechne:

>

> [mm]e^\pmat{ 1 & 2 \\ 2 & 3 }[/mm]
>  

>
>
>

> Hallo allerseits,

>

> zur Berechnung eines Matrixexponentials kenne ich zwei
> Möglichkeiten:

>

> Man kann zum einen die Folgepotenzen einer Matrix berechnen
> (also [mm]A^2, A^3, A^4, ...[/mm]) und daraus [mm]A^n[/mm] ermitteln womit
> man auch schon gewonnen hat.

>

> Wenn das nicht funktioniert gibt es auch die Möglichkeit
>  Eigenvektoren zur gegebenen Matrix zu ermitteln, daraus
> eine Matrix zusammenzubasteln und dann das
> Matrixexponential über [mm]e^A = P^{-1} * e^{P^{-1} * A * P} * P[/mm] zu
> berechnen.

>

> Der erste Weg funktioniert offensichtlich nicht immer, beim
> zweiten bin ich mir nicht sicher: Für die gegebene Matrix
> sehen schon die Eigenwerte relativ unschön aus, sodass es
> mir davor graut das beschriebene Prozedere komplett
> durchzuziehen.

Die Matrix hier ist doch schnell diagonalisiert. Die Eigenvektoren sind auch nicht allzu wild ...

Ich würde diesen Weg gehen ...

>

> Gibt es da keinen anderen Weg?
> Ich weiß bspw. noch, dass gilt: [mm]e^{B * A * B^{-1}} = B * e^A * B^{-1}[/mm]

Aber doch nicht für beliebige Matrizen $B$ ?!?!

> (was ein wenig an dem oben aufgeführten Weg 1 erinnert)
> Um das anwenden zu können müsste ich aber natürlich
> erst einmal eine zweite Matrix B haben. Nur wie finde ich
> eine solche Matrix?

Diagonalisiere erstmal deine Matrix ...

>

> Ein frohes Fest und viele Grüße,

Dir auch!


> Apfelchips

Gruß
schachuzipus

Bezug
                
Bezug
Matrixexponential berechnen: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 15:27 Mo 23.12.2013
Autor: Apfelchips

Hallo schachuzipus,

> > Berechne:
> >
> > [mm]e^\pmat{ 1 & 2 \\ 2 & 3 }[/mm]
> >  

>

> Die Matrix hier ist doch schnell diagonalisiert. Die
> Eigenvektoren sind auch nicht allzu wild ...

>

> Ich würde diesen Weg gehen ...

du hast recht, bei [mm]e^A = P^{-1} * e^D * P[/mm] lassen sich D, P und die Inverse von P mit relativ wenig Aufwand berechnen. Das alles dann aber miteinander zu multiplizieren führt leider zu unschönen Termen – funktioniert aber.

> >
> > Gibt es da keinen anderen Weg?
> > Ich weiß bspw. noch, dass gilt: [mm]e^{B * A * B^{-1}} = B * e^A * B^{-1}[/mm]

>

> Aber doch nicht für beliebige Matrizen [mm]B[/mm] ?!?!

B muss invertierbar und A und B müssen quadratrisch sein. Weitere Einschränkungen sind mir aber nicht bekannt.

Viele Grüße,
Apfelchips

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]