matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-Komplexe AnalysisMatrixnorm Abschätzung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Komplexe Analysis" - Matrixnorm Abschätzung
Matrixnorm Abschätzung < komplex < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrixnorm Abschätzung: Idee
Status: (Frage) beantwortet Status 
Datum: 23:55 Do 17.05.2012
Autor: Lonpos

Aufgabe
Wenn [mm] \parallel Ax\parallel\ge{\lambda*\parallel x\parallel} [/mm] für alle x in [mm] \IC^n [/mm] mit [mm] \lambda>0 [/mm] und beliebiger Vektornorm, dann existiert [mm] A^{-1} [/mm] und es gilt [mm] \parallel A^{-1}\parallel\le{\lambda^{-1}} [/mm] für die zur Vektornorm gehörige Matrixnorm

Das diese Äquivalenz gelten muss ist einleuchtend, ich bekomme es aber nicht zusammen, sie zu beweisen. Vielleicht hat jemand einen Tipp von euch.

        
Bezug
Matrixnorm Abschätzung: Antwort
Status: (Antwort) fertig Status 
Datum: 00:15 Fr 18.05.2012
Autor: donquijote


> Wenn [mm]\parallel Ax\parallel\ge{\lambda*\parallel x\parallel}[/mm]
> für alle x in [mm]\IC^n[/mm] mit [mm]\lambda>0[/mm] und beliebiger
> Vektornorm, dann existiert [mm]A^{-1}[/mm] und es gilt [mm]\parallel A^{-1}\parallel\le{\lambda^{-1}}[/mm]
> für die zur Vektornorm gehörige Matrixnorm
>  Das diese Äquivalenz gelten muss ist einleuchtend, ich
> bekomme es aber nicht zusammen, sie zu beweisen. Vielleicht
> hat jemand einen Tipp von euch.

Dass die Inverse existiert, folgt schon aus [mm] Ax\ne [/mm] 0 für alle [mm] x\ne [/mm] 0.
Für die Abschätzung setzt du y=Ax und [mm] x=A^{-1}y [/mm] und erhältst [mm] \lambda\|A^{-1}y\|\le\|y\| [/mm] für alle y

Bezug
                
Bezug
Matrixnorm Abschätzung: Frage (überfällig)
Status: (Frage) überfällig Status 
Datum: 08:56 Fr 18.05.2012
Autor: Lonpos

Danke für deine Hilfe.
Ich habe hier noch 2 andere Ungleichungen bei denen mir gerade nichts passendes einfällt

(1): [mm] \parallel A^{-1}\parallel_{\infty}\le{\bruch{1}{\min_{i}(|A_{ii}|-\summe_{k\not=i}^{}|A_{ik}|)}} [/mm]

(2): [mm] \parallel A^{-1}\parallel_{1}\le{\bruch{1}{\min_{k}(|A_{kk}|-\summe_{k\not=i}^{}|A_{ik}|)}} [/mm]

Die Ausdrücke auf der rechten Seite sind positiv.

Bezug
                        
Bezug
Matrixnorm Abschätzung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:43 Fr 18.05.2012
Autor: Lonpos

Vielleicht gibt es eine Möglichkeit es mit

[mm] \parallel A^{\infty}\parallel_{\infty}=max\summe_{k=1}^{m}|A_{ik}| [/mm]

und

[mm] \parallel A^{-1}\parallel_{1}=max\summe_{i=1}^{m}|A_{ik}| [/mm]

zu zeigen.

Bezug
                        
Bezug
Matrixnorm Abschätzung: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 09:20 So 20.05.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Komplexe Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]