matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrizen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Lineare Algebra - Matrizen" - Matrizen
Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:21 Di 09.06.2015
Autor: Neutron

Aufgabe
Sei A [mm] \in K^{n,n} [/mm] und sei U [mm] \in K^{n,n} [/mm] eine zu A ähnliche orthogonale bzw. Untiere Matrix. Zeigen Sie:

(a) A ist invertierbar

(b) [mm] A^{-1} [/mm] ist ähnlich zu [mm] A^{H} [/mm]

Hallo,

die Aufgabe (a) hab ich schon gelöst ob wollte mal fragen ob die Lösung korrekt ist. Bei (b) fehlt mir etwas der Ansatz.

zu (a): Weil U orthogonal bzw. unitär ist, ist die det(U) = +/- 1. Weil U ähnlich zu A ist, gilt ebenfalls det(A) = +/- 1 und somit det(A) [mm] \not= [/mm] 0. Also ist A invertierter.

zu (b): Hier hab ich mir überlegt, dass weil U unitär und ähnlich zu A ist, ist auch A unitär. (Gilt das???) Daraus würde folgen, wegen [mm] A^{H} [/mm] = [mm] A^{-1} [/mm] (Eigenschaft Unitärer Matrizen) sind diese ja gleich. Und da gleiche Matrizen ähnlich sind, ist die Frage beantwortet.

Wie gesagt bei (b) weis ich nicht ob mein Ansatz richtig ist.  

Hoffe ihr könnt mir helfen. Danke!

        
Bezug
Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:19 Mi 10.06.2015
Autor: hippias


> Sei A [mm]\in K^{n,n}[/mm] und sei U [mm]\in K^{n,n}[/mm] eine zu A ähnliche
> orthogonale bzw. Untiere Matrix. Zeigen Sie:
>  
> (a) A ist invertierbar
>  
> (b) [mm]A^{-1}[/mm] ist ähnlich zu [mm]A^{H}[/mm]
>  Hallo,
>  
> die Aufgabe (a) hab ich schon gelöst ob wollte mal fragen
> ob die Lösung korrekt ist. Bei (b) fehlt mir etwas der
> Ansatz.
>  
> zu (a): Weil U orthogonal bzw. unitär ist, ist die det(U)
> = +/- 1. Weil U ähnlich zu A ist, gilt ebenfalls det(A) =
> +/- 1 und somit det(A) [mm]\not=[/mm] 0. Also ist A invertierter.

In Ordnung.

>  
> zu (b): Hier hab ich mir überlegt, dass weil U unitär und
> ähnlich zu A ist, ist auch A unitär. (Gilt das???)

So eine Frage kannst Du selbst versuchen zu beantworten, indem Du einen Beweis versuchst, bzw. einfach mal die Probe mit einem Zahlenbeispiel durchfuehrst.

> Daraus
> würde folgen, wegen [mm]A^{H}[/mm] = [mm]A^{-1}[/mm] (Eigenschaft Unitärer
> Matrizen) sind diese ja gleich. Und da gleiche Matrizen
> ähnlich sind, ist die Frage beantwortet.

Fuer mich legt die Fragestellung ein anderes Ergebnis nahe. Ein anderer Ansatz waere die Definitionsgleichung fuer $A$ aehnlich zu $U$ zu betrachten und dann [mm] $A^{H}$ [/mm] zu bilden. Vielleicht sieht man dann etwas...

>  
> Wie gesagt bei (b) weis ich nicht ob mein Ansatz richtig
> ist.  
>
> Hoffe ihr könnt mir helfen. Danke!


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]