matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMatrizendarstellungen gesucht
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Informatik • Physik • Technik • Biologie • Chemie
Forum "Lineare Algebra - Matrizen" - Matrizendarstellungen gesucht
Matrizendarstellungen gesucht < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Matrizendarstellungen gesucht: Aufgabe
Status: (Frage) beantwortet Status 
Datum: 19:03 Fr 14.12.2007
Autor: technoman

Aufgabe
In [mm] \IR\ ^2 [/mm] seien die Standartbasis [mm] E:e_1=\left(1,0\right) , e_2=\left(0,1\right) [/mm] und die Basis [mm] B:b_1=\left(1,-1\right) , b_2=\left(3,1\right) [/mm] gegeben.

Sei  [mm]\alpha : \IR\ ^2 \to \IR\ ^2 [/mm] die durch

[mm]\alpha \left(b_1\right)=\left(5,-10\right) [/mm]  und  [mm]\alpha \left(b_2\right)=\left(3,-6\right) [/mm]

definierte lineare Abbildung.


a) Brechnen Sie die die Matrixdarstellungen: [mm]_{B}id_B [/mm]  ,  [mm]_{E}id_B [/mm]  und  [mm]_{B}id_E [/mm]

b) Brechnen Sie die die Matrixdarstellungen: [mm]_{E}\alpha_B [/mm]  ,  [mm]_{E}\alpha_E [/mm]  und  [mm]_{B}\alpha_E [/mm]

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


Die erste Teilaufgabe habe ich verstanden.
Es ist z.B beim ersten Fall eine Matrix gesucht, welche man mit der Matrix [mm]\pmat{ 1 & 3 \\-1 & 1 }[/mm] (B Matrix) multipliziert und rauskommen soll wieder die Matrix aus den b-Vektoren (die B Matrix). Also wieder [mm]\pmat{ 1 & 3 \\ -1 & 1 } [/mm].  Im zweiten Fall sucht man eine Matrix, welche mit der Matrix aus den e Vektoren (E Matrix) multipliziert die Matrix der b Vektoren ergibt. Und im dritten Fall sucht man eine Matrix, die mit der B multipliziert die E Matrix ergibt.

Gelöst habe ich das dann immer wie Folgt.
Für den ersten Fall:
[mm]\pmat{ 1 & 3 \\ -1 & 1 } \* \pmat{ a & c \\ b & d } = \pmat{ 1 & 3 \\ -1 & 1 } [/mm]
Dann habe ich die Gleichungen aufgestellt (Die a,b,c,d Matrix reingerechnet und mit den Zahlen rechts vom Gleich verglichen) :
[mm]1a + 3b = 1 [/mm]
[mm]-1a + 1b = -1 [/mm]
[mm]1c + 3d = 3 [/mm]
[mm]-1c + 1d = 1 [/mm]

Dann habe ich die Gleichungen aufgelöst und habe dann die Ergebnisse bekommen.
[mm]_{B}id_B = \pmat{ 1 & 0 \\ 0 & 1 } [/mm]  ,  [mm]_{E}id_B =\pmat{ 1 & 3 \\ -1 & 1 }[/mm]  und  [mm]_{B}id_E = \pmat{\bruch{1}{4} &- \bruch{3}{4} \\ \bruch{1}{4} & \bruch{1}{4} } [/mm]

Diese Ergebnisse stimmen auch. Die Lösungen der Aufgaben habe ich.

Wie löst man nun aber den Aufgabenteil b)?
Ich finde auch im Internet und in der Literatur die verwendete Schreibweise nicht: [mm]_{E}\alpha_B [/mm]
Kann mir jemand diese Aufgabe "übersetzen". ("Suche eine Matrix die mit dem "..." multipliziert das "..." ergeben soll")

Vielen Dank für die Antworten


        
Bezug
Matrizendarstellungen gesucht: Antwort
Status: (Antwort) fertig Status 
Datum: 04:46 Sa 15.12.2007
Autor: Zneques

Hallo,

Ich würde mal sagen das [mm] \alpha [/mm] soll die Basen aufeinander Abbilden.
D.h.  [mm] _B\alpha_E e_1 [/mm] = [mm] b_1 [/mm]  bzw. [mm] _B\alpha_E (e_1 e_2) [/mm] = [mm] (b_1 b_2) [/mm]

Ciao.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]