matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenStatistik (Anwendungen)Maximum-Likelihood-Methode
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Statistik (Anwendungen)" - Maximum-Likelihood-Methode
Maximum-Likelihood-Methode < Statistik (Anwend.) < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum-Likelihood-Methode: schwere Aufgabe
Status: (Frage) beantwortet Status 
Datum: 21:58 So 11.09.2011
Autor: Giraffe_

Aufgabe
Hallo.

Ich habe Probleme den Lösungsansatz bzw. die gesamte Lösung zu einer aus meiner Sicht schwierigen Übungsaufgabe zu finden. Hier erst einmal die Aufgabe:

„Trotz des verwandelten Elfmeters hat Eigentor 07 das Spiel haushoch verloren. Im ersten Training danach ordnet der Trainer daher Torschusstraining an. Hierfür stellt er einen Holzpfosten auf, den die Stürmer aus 11 Meter Entfernung treffen sollen. Die folgende Tabelle gibt die Ergebnisse eines der Spieler an, dessen Namen wir hier aus Gründen des Persönlichkeitsschutzes verschweigen wollen.
Die Tabelle zeigt die Ergebnisse von 10 Schussversuchen; eine positive Zahl x bedeutet: das Ziel um x Meter nach rechts verfehlt, eine negative Zahl entsprechend nach links. Das Ergebnis 0 bedeutet: Ziel
Versuch Nr.        Abweichung
1                        3
2                       -1
3                        0
4                        5
5                        1
6                       -2
7                       -7
8                        0
9                        1
10                      10

Die Ergebnisse können als Werte einer normalverteilten Zufallsgröße angesehen werden. Bestimmen Sie mithilfe der Maximum-Likelihood-Methode eine Schätzung für Erwartungswert und Streuung dieser Verteilung.“

Die Likelihood-Funktion muss auf jeden Fall differenziert werden, dass ist mir klar:
d/dϑ * ln L(x1,…xn;ϑ)=0
Dann ersetzt man die der Lösung der Likelihood-Gleichung die Werte xi der konkreten Stichprobe durch die zugehörigen Stichprobenvariablen Xi  ( i=1,…,n ), so gelangt man zu einer Schätzung ϑn=φ(X1,…,Xn). Das stellt dann die Maximum-Likelihood-Schätzung für ϑ dar.

Bei den Werten handelt es sich um eine normalverteilte Zufallsgröße. D.h. ich muss die Parameter μ und σ^2 verwenden.

Jetzt weiß ich allerdings nicht, was sich für die Likelihood-Funktion ergibt und wie ich die Likelihood-Gleichung aufstellen soll/kann. Und schon gar nicht, wie ich auf den Erwartungswert und die Streuung dieser Gleichung komme. Kann mir da jemand weiterhelfen?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Maximum-Likelihood-Methode: Antwort
Status: (Antwort) fertig Status 
Datum: 22:17 So 11.09.2011
Autor: luis52

Moin Giraffe_

[willkommenmr]

Musst du denn die ML-Schaetzer *herleiten*?
Es ist bekannt, dass die ML-Schaetzer bei der
Normalverteilung [mm] $\bar x=\sum_{i=1}^nx_i/n$ [/mm] fuer
den Erwartungswert und  [mm] $\sqrt{\sum_{i=1}^n(x_i-\bar x)^2/n}$ [/mm]
fuer die Standardabweichung sind.

vg Luis

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Statistik (Anwendungen)"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]