matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraMaximum einer Kreisgleichung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Maximum einer Kreisgleichung
Maximum einer Kreisgleichung < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum einer Kreisgleichung: Tipp
Status: (Frage) beantwortet Status 
Datum: 20:50 Fr 03.01.2014
Autor: MatheKid

Also ich habe mich folgendes gefragt.

Gegeben sei eine Kreisgleichung der Form:
x² + y² = ax + bx + c

Welchen höhsten Wert kann die Gleichung dx + ey annehmen?

Es gibt ja viele geordnete Paare, die die Kreisgleichung erfüllen. Aber wie ermittelt man das Paar, das zusammen die höhste Summe hat?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Maximum einer Kreisgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 20:56 Fr 03.01.2014
Autor: abakus


> Also ich habe mich folgendes gefragt.

>

> Gegeben sei eine Kreisgleichung der Form:
> x² + y² = ax + bx + c

>

> Welchen höhsten Wert kann die Gleichung dx + ey annehmen?

Die richtige Antwort lautet "Banane".

Übrigens ist ein einzelner Term keine Gleichung.
Jetzt mal im Ernst: wie lautet die Aufgabe richtig? Was ist sollen d und e sein?

Gruß Abakus

>

> Es gibt ja viele geordnete Paare, die die Kreisgleichung
> erfüllen. Aber wie ermittelt man das Paar, das zusammen
> die höhste Summe hat?

>

> Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.

Bezug
                
Bezug
Maximum einer Kreisgleichung: Korrektur
Status: (Frage) beantwortet Status 
Datum: 21:20 Fr 03.01.2014
Autor: MatheKid

Es gibt keine direkte Aufgabe dazu. Das a,b,c, d und e sind beliebige reelle Koeffizienten.

Wenn man zum Beispiel die Gleichung gegeben x²+y² = 6x + 4y + 2 hat.

Welchen höhsten Wert kann dann beispielsweise der Term 3x + 8y annehmen?

Mögliche geordnete Paare für die Gleichung wären doch [mm] (0;2-\wurzel{6}) [/mm] und [mm] (0;2+\wurzel{6}). [/mm]

Diese Werte in den Term eingegeben, ergeben dann:

3(0) + [mm] 8(2-\wurzel{6}) [/mm] = -3.5955...
3(0) + [mm] 8(2+\wurzel{6}) [/mm] = 35.595...

Nun gibt es aber doch viel mehr geordnete Paare. Meine Frage war nun, wie man das Zahlenpaar ermittelt, das dann in den Term eingegeben den größt möglichen Wert gibt für diesen Term.


Bezug
                        
Bezug
Maximum einer Kreisgleichung: Antwort
Status: (Antwort) fertig Status 
Datum: 21:37 Fr 03.01.2014
Autor: abakus


> Es gibt keine direkte Aufgabe dazu. Das a,b,c, d und e sind
> beliebige reelle Koeffizienten.

>

> Wenn man zum Beispiel die Gleichung gegeben x²+y² = 6x +
> 4y + 2 hat.

>

> Welchen höhsten Wert kann dann beispielsweise der Term 3x
> + 8y annehmen?

Hallo,
alle Punkte der Ebene, für die 3x+8y einen bestimmten konstanten Wert einnehmen, liegen auf einer Geraden.
Die Punkte, für die diese Summe 0 ist, liegen auf der Geraden 3x+8y=0.
Die Punkte, für die diese Summe 5 ist, liegen auf der Geraden 3x+8y=5.
Allgemein:
Die Punkte, für die diese Summe s ist, liegen auf der Geraden 3x+8y=s. 
Eine solche Gerade kann den Kreis schneiden. Dann hat man also zwei Kreispunkte mit eben der betrachteten Summe.
Wenn man nun die Gerade  3x+8y=s ein wenig parallel verschiebt wird s entweder etwas größer oder etwas kleiner. Wenn s größer wird und die Gerade immer noch den Kreis schneidet, dann hat man zwei Kreispunkte mit einer etwas größeren Summe gefunden. 
Wenn man die Gerade nun so weit verschiebt, dass sie den Kreis nur noch in einem Punkt berührt, dann hat man eine extreme Summe gefunden.
Man muss s also so wählen, dass 3x+8y=s eine Tangente am gegebenen Kreis ist. Für dieses s gibt es zwei Möglichkeiten, eine liefert die minimale und eine die maximale Summe.
Gruß Abakus

>

> Mögliche geordnete Paare für die Gleichung wären doch
> [mm](0;2-\wurzel{6})[/mm] und [mm](0;2+\wurzel{6}).[/mm]

>

> Diese Werte in den Term eingegeben, ergeben dann:

>

> 3(0) + [mm]8(2-\wurzel{6})[/mm] = -3.5955...
> 3(0) + [mm]8(2+\wurzel{6})[/mm] = 35.595...

>

> Nun gibt es aber doch viel mehr geordnete Paare. Meine
> Frage war nun, wie man das Zahlenpaar ermittelt, das dann
> in den Term eingegeben den größt möglichen Wert gibt
> für diesen Term.

>

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]