matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisMaximum oder Minimum
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Analysis" - Maximum oder Minimum
Maximum oder Minimum < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximum oder Minimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:17 So 27.08.2006
Autor: hooover

Aufgabe
Haben folgende Funktion ein Maximum oder ein Minimum? Begründen Sie.

1) [mm] f:[-1,1]\to\IR, x\mapsto e^{x sin(x)} [/mm]

2) [mm] g:[-1,0[\to\IR, x\mapsto\bruch{1}{x^2} [/mm]

3) [mm] h:]-2\pi,2\pi[\to\IR, x\mapsto [/mm] sin(x)

Hallo Leute,

1)

wenn ich das richtg verstehe suche ich hier nach min oder max im Intervall

-1 bis 1 bei f.

1. Das Intervall ist kompakt.

2. Die Funktion ist stetig im Intervall, aber warum? Sehe ich nur anhand meiner Zeichnung.

Also wenn ich die FKt. zeichne sehe ich ganz klar das sie ein lokales Minimum bei x=0 für f(x)=1 hat, was auch ein Infimum sein dürfte.

Aber wie zeige ich das, und wie begründe ich das ganze in saubere Mathematik?

2)

g ist das ein halboffenes Intervall.

hier könnte ich mit dem lim argumentieren, das die funktion gegen Null konvergiert, oder?

eigentlich hat sie bei x=0 eine defintionslücke und ist somit auch nicht stetig.

Also dürfte sie auch keine Extremstelle besitzten.

3)

h ist halt ne einfache sinus funktion.

wieder ein halboffenes Intervall.

die hat ja ganz klar min und max.


wie aber begründe ich das ganze in sauber art und weise?

Wie gehe ich mit diesen halboffenen Intervallen um, oder wie betrachte ich die?

1000 Dank Gruß hooover






        
Bezug
Maximum oder Minimum: Kurvendiskussion!
Status: (Antwort) fertig Status 
Datum: 00:53 Mo 28.08.2006
Autor: VNV_Tommy

Hallo hooover!

Den Nachweis über Minima oder Maxima kannst du ganz normal über eine Kurvendiskussion führen (gilt für alle 3 Funktionen). Dazu bildest du dir nach den bekannten Regeln der Differentiation die jeweils erste UND zweite Ableitung der Funktionen. Indemdu die erste Ableitung zu Null setzt bestimmst du die x-Koordinate(n) der möglichen Extrempunkte. Diese x-Koordinaten (sofern du welche ermitteln konntest) in die jeweils zweite Ableitung einsetzen um die Art des Extremums zu bestimmen.

An den Intervallgrenzen und den Definitionslücken würde ich auf jeden Fall eine rechts- und/oder linksseitige Grenzwertuntersuchung durchführen.

An sich ist die Aufgabe also nicht sehr schwer, höchstens umfangreich.

Gruß,
Tommy

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]