matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenReelle Analysis mehrerer VeränderlichenMaximumsnorm als Grenzfall
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Reelle Analysis mehrerer Veränderlichen" - Maximumsnorm als Grenzfall
Maximumsnorm als Grenzfall < mehrere Veränderl. < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Maximumsnorm als Grenzfall: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:44 Sa 30.11.2019
Autor: Boogie2015

Eingabefehler: "\left" und "\right" müssen immer paarweise auftreten, es wurde aber ein Teil ohne Entsprechung gefunden (siehe rote Markierung)

Guten Vormittag, ich möchte gerne wissen, warum $\lim\limits_{ p \rightarrow \infty} \vert \vert x \vert \vert_{p} = \lim\limits_{ p \rightarrow \infty}\left (  \sum\limits_{j = 1}^{d} \vert x_{j} \vert ^{p} \right)^{\frac{1}{p}} = max_{j = 1, \ldos, d} \vert x_{j} \vert = \vert \vert x \vert \vert_{\infty}$ gilt.


Ich habe mir dazu den Beweis auf Wikipedia angeschaut, also  diesen:

________________________________________________________________________________________________________________________________

$\lim _{p\rightarrow \infty }\left(\sum _{i=1}^{n}|x_{i}|^{p}\right)^{1/p}\!\!\!\!\!=\|x\|_{\infty }\cdot \lim _{p\rightarrow \infty }\left(\sum _{i=1}^{n}\left({\frac {|x_{i}|}{\|x\|_{\infty }}}\right)^{p}\right)^{1/p}\!\!\!\!\!=\|x\|_{\infty }\cdot \lim _{p\rightarrow \infty }S^{1/p}=\|x\|_{\infty }}$,

da für die Summe $1 \leq S \leq n$ gilt und somit der Grenzwert von $ \sqrt[p]{S}$ für $ p\rightarrow \infty $ gleich Eins ist. Die untere Schranke von $S$ wird dabei für einen Vektor angenommen, dessen Komponenten bis auf eine alle gleich Null sind, und die obere Schranke$n$ für einen Vektor, dessen Komponenten alle den gleichen Betrag besitzen.  Durch Weglassen des Limes ist so auch ersichtlich, dass die Maximumsnorm niemals größer als die $p$ -Normen ist.


________________________________________________________________________________________________________________________________

Den Beweis dazu habe ich eigentlich ganz gut verstanden, aber der ist noch nicht so richtig intuitiv, weil da mit $\frac{\vert \vert x \vert \vert_{\infty}}{\vert \vert x \vert \vert_{\infty}}$ gespielt wird.

Ich meine, die künstliche $1$ fügt man nur hinzu, weil man am Ende eh weiß, dass der Grenzwert eben die Maximumsnorm ist. Aber das wusste man ja am Anfang nicht. Daher hätten sie nicht auf so einem Ansatz kommen können.


Meine Frage ist: Wie komme ich auf den selben Grenzwert, ohne mitten in der Rechnung das Maximum aller Beträge zu erhalten oder eine derartige künstliche $1$ hinzuzufügen?


Ich hoffe, ihr wisst, was ich meine.


Wie schaffe ich es also auf natürlichem Weg, die Gleichung $\lim _{p\rightarrow \infty }\left(\sum _{i=1}^{n}|x_{i}|^{p}\right)^{1/p}\!\!\!\!\! = \|x\|_{\infty }}$ zu zeigen?




Ich würde z.B. so anfangen:


$\lim _{p\rightarrow \infty }\left(\sum _{i=1}^{n}|x_{i}|^{p}\right)^{1/p}\!\!\!\!\! = \lim _{p\rightarrow \infty }  \sqrt[p]{\vert x_{1} \vert^{p} + \vert x_{2} \vert^{p} + \vert x_{3} \vert^{p} +  \ldots + \vert x_{d} \vert^{p}} =  \lim _{p\rightarrow \infty }  \sqrt[p]{\vert x_{1} \vert^{p} \left 1 +\frac{\vert x_{2} \vert^{p}}{\vert x_{1} \vert^{p}} + \frac{\vert x_{3} \vert^{p}}{\vert x_{1} \vert^{p}} + \ldots + \frac{\vert x_{d} \vert^{p}}{\vert x_{1} \vert^{p}} \right )} = \lim _{p\rightarrow \infty }  \sqrt[p]{\vert x_{1} \vert^{p} \left ( 1 + \left ( \frac{\vert x_{2} \vert }{\vert x_{1} \vert} \right )^{p} + \left ( \frac{\vert x_{3} \vert }{\vert x_{1} \vert} \right )^{p} + \ldots + \left ( \frac{\vert x_{d} \vert }{\vert x_{1} \vert} \right )^{p} \right )}$


$ = \lim _{p\rightarrow \infty }  \vert x_{1} \vert \cdot   \sqrt[p]{ \left ( 1 + \left ( \frac{\vert x_{2} \vert }{\vert x_{1} \vert} \right )^{p} + \left ( \frac{\vert x_{3} \vert }{\vert x_{1} \vert} \right )^{p} + \ldots + \left ( \frac{\vert x_{d} \vert }{\vert x_{1} \vert} \right )^{p} \right )}$

Und so weiter. Aber das wird eine ewige Rechnung. Gibt es andere Methoden?





lg, boogie

        
Bezug
Maximumsnorm als Grenzfall: Antwort
Status: (Antwort) fertig Status 
Datum: 15:11 Sa 30.11.2019
Autor: fred97

Was mit S gemeint ist, hast du nicht  gesagt.

Ich beweise obige Grenzwertbeziehung so, dabei  genügt es, den  Fall d=2  zu betrachten ( die Idee für den allgemeinen Fall dürfte dann klar sein.)

Seien  a und b nichtnegative Zahlen und a [mm] \le [/mm] b. Es folgt

$b [mm] \le (b^{p}+a^{p})^{1/p} \le (2b^{p})^{1/p}=2^{1/p}b. [/mm] $

mit $p [mm] \to \infty [/mm]  $ folgt das Resultat.

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Reelle Analysis mehrerer Veränderlichen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]