matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAxiomatische MengenlehreMenge / Abbildungen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Axiomatische Mengenlehre" - Menge / Abbildungen
Menge / Abbildungen < axiomatisch < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge / Abbildungen: "Idee", "Tipp"
Status: (Frage) beantwortet Status 
Datum: 16:42 Do 27.10.2011
Autor: Funkiller

Aufgabe
a) Sei M eine endliche menge mit genau n [mm] \varepsilon \IN [/mm] Elementen, sei k eine ganze Zahlmit 0 [mm] \le [/mm] k [mm] \le [/mm] n und sei Pk(M) die Menge aller Teilmengen A [mm] \subset [/mm] M mit genau k Elementen. Beweisen Sie, dass Pk(M) genau [mm] \vektor{n \\ k} [/mm] Elemente besitzt.

b) Untersuchen Sie, ob die Menge aller Abbildungen f: [mm] \IN [/mm] --> [mm] \IN [/mm] mit f(n) [mm] \le [/mm] f(n+1) für alle n [mm] \varepsilon \IN [/mm] abzählbar oder unabzählbar ist. Wie verhält es sich für die Menge aller Abbildungen f: [mm] \IN [/mm] --> [mm] \IN [/mm] mit f(n) [mm] \ge [/mm] f(n+1) für alle n [mm] \varepsilon \IN [/mm] ?

Kann mir i-wer dazu einen Tipp / Ansatz / Lösung geben?

Verstehe überhaupt nichts an dieser Frage.

Wäre auch besonders dankbar über eine Erklärung von der Lösung / Tipp!

Danke schön im vorraus!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.




        
Bezug
Menge / Abbildungen: Antwort
Status: (Antwort) fertig Status 
Datum: 20:31 Do 27.10.2011
Autor: reverend

Hallo Funkiller,

ich glaube, heute muss ich mal die Spaßbremse sein.

> a) Sei M eine endliche menge mit genau n [mm]\varepsilon \IN[/mm]
> Elementen, sei k eine ganze Zahlmit 0 [mm]\le[/mm] k [mm]\le[/mm] n und sei
> Pk(M) die Menge aller Teilmengen A [mm]\subset[/mm] M mit genau k
> Elementen. Beweisen Sie, dass Pk(M) genau [mm]\vektor{n \\ k}[/mm]
> Elemente besitzt.
>  
> b) Untersuchen Sie, ob die Menge aller Abbildungen f: [mm]\IN[/mm]
> --> [mm]\IN[/mm] mit f(n) [mm]\le[/mm] f(n+1) für alle n [mm]\varepsilon \IN[/mm]
> abzählbar oder unabzählbar ist. Wie verhält es sich für
> die Menge aller Abbildungen f: [mm]\IN[/mm] --> [mm]\IN[/mm] mit f(n) [mm]\ge[/mm]
> f(n+1) für alle n [mm]\varepsilon \IN[/mm] ?

>

>  Kann mir i-wer dazu einen Tipp / Ansatz / Lösung geben?

Schreib deutsch. Das ist kein Chat hier.

> Verstehe überhaupt nichts an dieser Frage.

Überhaupt nichts? Dann mach einen Straßenbahnführerschein oder etwas anderes, das Dir Deinen Lebensunterhalt einigermaßen verlässlich sichert. Oder hast Du diese Aufgaben von einem aktuellen Übungszettel? Dann solltest Du doch irgendetwas davon verstehen, zumindest aber über die nötigen Definitionen verfügen. Welche davon meinst Du, hier benutzen zu können oder zu müssen?

> Wäre auch besonders dankbar über eine Erklärung von der
> Lösung / Tipp!

Aufgabe a: Wieviele Möglichkeiten gibt es, k von n Elementen auszuwählen? Tipp: Kombinatorik.

Aufgabe b: [mm] f(n)=n^2 [/mm] erfüllt die Vorgabe, f(n)=n+1, f(n)=2n, [mm] f(n)=2^n, f(n)=(n-1)^2+8n [/mm] auch. Was weißt Du über das Thema "Überabzählbarkeit"? Wenn [mm] \infty [/mm] für "abzählbar unendlich" steht, dann ist [mm] \infty*\infty=\infty, [/mm] auch [mm] \infty^{2.966.713}=\infty. [/mm] Wie kannst Du also eine solche Vielfalt an Funktionen erzeugen, dass es eben überabzählbar viele davon gibt? Oder geht das nicht? Darum geht der erste Teil.

Der zweite Teil der Aufgabe sollte deutlich einfacher sein. Immerhin wird auf [mm] \IN [/mm] abgebildet. Was heißt das für die Abbildungsvorschrift? Worauf wird ein beliebig großes Element der Definitionsmenge abgebildet? Was wird auf das Element 1 der Wertemenge abgebildet?

> Danke schön im vorraus!

Da ist ein r zuviel, das kannst Du behalten.

Dann mal los.

Grüße
reverend


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Axiomatische Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]