matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra - MatrizenMenge bestimmter Matrizen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Lineare Algebra - Matrizen" - Menge bestimmter Matrizen
Menge bestimmter Matrizen < Matrizen < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge bestimmter Matrizen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 21:46 Sa 25.04.2009
Autor: T_sleeper

Aufgabe
Eine Matrix [mm] A_n=(a_{ij})\in M(n\times [/mm] n,K) wird durch die Gleichungen [mm] a_{i,i+1}=1 [/mm]   für [mm] 1\leq [/mm] i<n und [mm] a_{ij}=0 \forall [/mm] i,j mit [mm] j\neq [/mm] i+1 beschrieben.

(1) Man soll durch Gleichungen die Menge [mm] N\subset M(n\times [/mm] n,K) aller Matrizen B beschreiben, die sich als Linearkombination von Potenzen [mm] (A_n)^t [/mm] mit [mm] t\geq [/mm] 0 schreiben lassen und
(2) Beweise: N ist die Menge der Matrizen B mit [mm] A_nB=BA_n. [/mm]  

Hallo,

zu (1). Wenn ich mehrere [mm] (A_n)^t [/mm]  linear kombiniere, bekomme ich als Ergebnis immer obere Dreiecksmatrizen. Aber wie genau ist das mit den Gleichungen gemeint? Was muss ich da machen?
zu (2). Dafür brauche ich wahrscheinlich den ersten Teil oder?

        
Bezug
Menge bestimmter Matrizen: Antwort
Status: (Antwort) fertig Status 
Datum: 08:22 So 26.04.2009
Autor: angela.h.b.


> Eine Matrix [mm]A_n=(a_{ij})\in M(n\times[/mm] n,K) wird durch die
> Gleichungen [mm]a_{i,i+1}=1[/mm]   für [mm]1\leq[/mm] i<n und [mm]a_{ij}=0 \forall[/mm]
> i,j mit [mm]j\neq[/mm] i+1 beschrieben.
>  
> (1) Man soll durch Gleichungen die Menge [mm]N\subset M(n\times[/mm]
> n,K) aller Matrizen B beschreiben, die sich als
> Linearkombination von Potenzen [mm](A_n)^t[/mm] mit [mm]t\geq[/mm] 0
> schreiben lassen und
>  (2) Beweise: N ist die Menge der Matrizen B mit [mm]A_nB=BA_n.[/mm]
> Hallo,
>  
> zu (1). Wenn ich mehrere [mm](A_n)^t[/mm]  linear kombiniere,
> bekomme ich als Ergebnis immer obere Dreiecksmatrizen.

Hallo,

bekommst Du irgendwelche Dreiecksmatrizen?
Wie sehen die Matrizen aus, die Du erhältst.

Danach erst kann man über die Gleichungen gut nachdenken.

> Aber
> wie genau ist das mit den Gleichungen gemeint?

Schau Dir den einführenden Aufgabentext an. Ich gehe davon aus, daß Du die Matrizen aus (1) in diesem Stile beschreiben sollst.

Gruß v. Angela



> Was muss ich
> da machen?
>  zu (2). Dafür brauche ich wahrscheinlich den ersten Teil
> oder?


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra - Matrizen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]