matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMengenlehreMenge offen und beschränkt
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Mengenlehre" - Menge offen und beschränkt
Menge offen und beschränkt < Mengenlehre < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Menge offen und beschränkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:29 Di 09.10.2012
Autor: Duden

Aufgabe
Die Menge A = [mm] \{(x,y,z) \in \IR^{3} | x^{2} + y^{2} < 1, z=0\} \subseteq \IR^{3} [/mm] ist offen und beschränkt.

Hallöchen,

ich habe hier diese Aussage, die offensichtlich falsch sein soll. Meine Überlegung war, dass es ja ein 2D-Kreis ist.
Die Randpunkte gehören auf jeden Fall im [mm] \IR^{2} [/mm] nicht zur Menge und sie wäre auch abgeschlossen, also kompakt.
Im [mm] \IR^{3} [/mm] erschließt sich mir das noch nicht ganz.
Habe ich dort also als Randpunkte alle Punkte der Menge? Oder gar keine Randpunkte? Wenn alle Punkte der Menge Randpunkte im [mm] \IR^{3} [/mm] wären, wäre die Menge ja abgeschlossen, im anderen Fall weder offen noch abgeschlossen.

Was ist A denn genau?

Viele Grüße

        
Bezug
Menge offen und beschränkt: Antwort
Status: (Antwort) fertig Status 
Datum: 19:51 Di 09.10.2012
Autor: fred97


> Die Menge A = [mm]\{(x,y,z) \in \IR^{3} | x^{2} + y^{2} < 1, z=0\} \subseteq \IR^{3}[/mm]
> ist offen und beschränkt.
>  Hallöchen,
>  
> ich habe hier diese Aussage, die offensichtlich falsch sein
> soll. Meine Überlegung war, dass es ja ein 2D-Kreis ist.
> Die Randpunkte gehören auf jeden Fall im [mm]\IR^{2}[/mm] nicht zur
> Menge und sie wäre auch abgeschlossen, also kompakt.
> Im [mm]\IR^{3}[/mm] erschließt sich mir das noch nicht ganz.
> Habe ich dort also als Randpunkte alle Punkte der Menge?
> Oder gar keine Randpunkte? Wenn alle Punkte der Menge
> Randpunkte im [mm]\IR^{3}[/mm] wären, wäre die Menge ja
> abgeschlossen, im anderen Fall weder offen noch
> abgeschlossen.
>  
> Was ist A denn genau?

Zeichne ein xyz - Koordinatensytem. In die xy-Ebene zeichne die offene Kreisscheibe um den Ursprung mit Radius 1. Diese Fläche ist die Menge A.

FRED

> Viele Grüße


Bezug
                
Bezug
Menge offen und beschränkt: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 20:20 Di 09.10.2012
Autor: Duden

Danke schonmal, jedoch hatte ich das ja schon in meinem Text geschrieben, die Frage war vielmehr:

Was sind die Randpunkte?
Welche Randpunkte sind in A enthalten?

Viele Grüße
Duden

Bezug
                        
Bezug
Menge offen und beschränkt: Antwort
Status: (Antwort) fertig Status 
Datum: 23:33 Di 09.10.2012
Autor: rainerS

Hallo!

> Danke schonmal, jedoch hatte ich das ja schon in meinem
> Text geschrieben, die Frage war vielmehr:
>  
> Was sind die Randpunkte?

Randpunkte sind alle diejenigen Punkte, in deren offenen Umgebungen sowohl Punkte aus A wie auch Punkte außerhalb von A liegen.

>  Welche Randpunkte sind in A enthalten?

Betrachte einen beliebigen Punkt der Menge A und schau dir eine [mm] $\epsilon$-Umgebung [/mm] davon an. Liegt diese Umgebung vollständig in A oder nicht? Ist die Antwort für jeden Wert von [mm] $\epsilon$ [/mm] ein Nein, so ist die Menge nicht offen.

  Viele Grüße
    Rainer

Bezug
        
Bezug
Menge offen und beschränkt: Antwort
Status: (Antwort) fertig Status 
Datum: 23:29 Di 09.10.2012
Autor: rainerS

Hallo!

> Die Menge A = [mm]\{(x,y,z) \in \IR^{3} | x^{2} + y^{2} < 1, z=0\} \subseteq \IR^{3}[/mm]
> ist offen und beschränkt.
>  Hallöchen,
>  
> ich habe hier diese Aussage, die offensichtlich falsch sein
> soll. Meine Überlegung war, dass es ja ein 2D-Kreis ist.
> Die Randpunkte gehören auf jeden Fall im [mm]\IR^{2}[/mm] nicht zur
> Menge und sie wäre auch abgeschlossen, also kompakt.

Nein, als Teilmenge der xy-Ebene ist sie offen und nicht abgeschlossen. DIe Kreislinie, die den Rand bildet, gehört doch nicht zur Menge, also kann sie auch nicht abegschlossen sein!


  Viele Grüße
     Rainer


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Mengenlehre"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]