matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesMengenlehre
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Lineare Algebra Sonstiges" - Mengenlehre
Mengenlehre < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Mengenlehre: Ordnungsrelation
Status: (Frage) beantwortet Status 
Datum: 19:38 Sa 02.11.2019
Autor: Kenano

Hallo guys, Kann jemand mir mit dieser Aufgabe hilfen? Danke im Voraus! :)

Sei A eine Menge. Unter einer totalen Ordnungsrelation auf A versteht man eine Ordnungsrelation ≤ auf A, die folgende zusätzliche Eigenschaft erfüllt: Zu je zwei  x, y ∈ A ist stets x ≤ y oder y ≤ x.
Welche der folgenden Ordnungsrelationen sind total? Begründen Sie Ihre Antworten für (b) und (c).

a) ≤ auf R
b) Teilbarkeit auf N
c) Teilbarkeit auf {2 hoch n : n ∈ N mit 0} = {1, 2, 4, 8, 16, . . .}

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Mengenlehre: Antwort
Status: (Antwort) fertig Status 
Datum: 21:19 Sa 02.11.2019
Autor: Gonozal_IX

Hiho,

> Hallo guys, Kann jemand mir mit dieser Aufgabe hilfen?

Hilfen bedeutet auch immer, dass du etwas selbst machst… sonst wäre es ja "machen".

Also?

> a) ≤ auf R

Gilt für zwei relle Zahlen x und y denn immer [mm] $x\le [/mm] y$ oder [mm] $y\le [/mm] x$?

> b) Teilbarkeit auf N

Hier gilt $x [mm] \le [/mm] y [mm] \gdw [/mm] x [mm] \text{teilt} [/mm] y$
Gilt nun für zwei beliebige natürliche Zahlen n und m immer "n teilt m" oder "m teilt n"?

> c) Teilbarkeit auf {2 hoch n : n ∈ N mit 0} = {1, 2, 4, 8, 16, . . .}

Hier wie bei b): gilt für zwei beliebige Zahlen aus obiger Menge immer eine teilt die andere?

Gruß,
Gono

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]