matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenMaßtheorieMessbarkeit
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Maßtheorie" - Messbarkeit
Messbarkeit < Maßtheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Messbarkeit: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:39 Sa 02.02.2008
Autor: Irmchen

Aufgabe
Zeigen Sie, dass dir folgende Funktion messbar ist.

[mm] f: \mathbb R - \mathbb R [/mm], die gegeben ist durch


[mm] f(x)=\left\{\begin{matrix} \cos(x), & \mbox{wenn } x \in \mathbb Q \\ 33, & \mbox{wenn} x \notin \mathbb Q \end{matrix}\right. [/mm]

Guten Abend!

Ich habe zu dieser Aufgabe bereits ein Lösung vorliegen, jedoch verstehe ich dabei eine Sache nicht!
So, erstmal die Lösung:

[mm] B \subset \mathbb R [/mm] messbar, dann ist

[mm] f^{-1}(B)=\left\{\begin{matrix} \cos^{-1}(B) \cap \mathbb Q , & \mbox{wenn } 33 \notin $ B \\ ( \mathbb R \setminus \mathbb Q ) \cup ( \cos^{-1}(B) \cap \mathbb Q ), & \mbox{wenn} 33 \in B \end{matrix}\right. [/mm]

[/mm]

( Hier bedeutet dieses ( hoch -1 ) beim Kosinus nicht  das Inverse sondern  das Urbild ).

Insgesamt ist [mm] f^{-1}(B) [/mm] messbar, da [mm] \mathbb Q , ( \mathbb R \setminus \mathbb Q ) [/mm] messbar sind;
[mm] \cos^{-1}(B) [/mm] messbar, denn ist Urbild einer messbaren Menge .

So und jetzt zu meine Frage:
Ich verstehe nicht warum das gilt:
[mm] f^{-1} (B) = ( \mathbb R \setminus \mathbb Q ) \cup ( \cos^{-1}(B) \cap \mathbb Q ) [/mm] wenn [mm] 33 \in B [/mm].

Ich hoffe jemand kann mir bei der Frage helfen!
Vielen Dank!

Viele Grüße
Irmchen


        
Bezug
Messbarkeit: Antwort
Status: (Antwort) fertig Status 
Datum: 18:21 Sa 02.02.2008
Autor: Blech


> So und jetzt zu meine Frage:
>  Ich verstehe nicht warum das gilt:
>  [mm]f^{-1} (B) = ( \mathbb R \setminus \mathbb Q ) \cup ( \cos^{-1}(B) \cap \mathbb Q )[/mm]
> wenn [mm]33 \in B [/mm].

[mm] $f^{-1}({33})$ [/mm] ist [mm] $\IR\backslash \IQ$, [/mm] weil $f(x)=33$ für [mm] $x\in \IR\backslash \IQ$ [/mm] nach Definition. Das vereinigst Du jetzt noch mit dem Urbild des Rests von B, wie im Fall, daß 33 nicht in B liegt.



Bezug
                
Bezug
Messbarkeit: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:11 So 03.02.2008
Autor: Irmchen

Hallo!

Ja, jetzt demmert es :-) !
Ich habe die Restmenge von B total vergessen, denn B muss ja nicht umbedingt nur aus der Zahl 33 bestehen...

Viele Dank!
Viele Grüße
Irmchen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Maßtheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]