matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenmathematische StatistikMinimum
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "mathematische Statistik" - Minimum
Minimum < math. Statistik < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Minimum: stichproben
Status: (Frage) beantwortet Status 
Datum: 15:39 Di 20.04.2010
Autor: simplify

Aufgabe
Es sei [mm] \delta:\IR \to \IR [/mm] stetig differenzierbar. [mm] \delta' [/mm] sei streng monoton steigend und bei 0 gleich Null: 0 ist also das eindeutig bestimmte Minimum von [mm] \delta. [/mm] (Beispiele: [mm] x^{2k}, e^{x^{4}},...). [/mm]
Fuer eine Stichprobe [mm] x_{1},...,x_{n} \in\IR [/mm] betrachten wir [mm] \gamma(x)=\summe_{i=1}^{n}a_{i} \delta(x-x_{i}) [/mm]  ,fuer alle x [mm] \in\IR, [/mm] mit [mm] a_{1},...,a_{n}>0. [/mm]
Beweisen Sie, dass es ein eindeutig bestimmtes [mm] x_{0} [/mm] zwischen min [mm] x_{i} [/mm] und max [mm] x_{i} [/mm] gibt, bei dem [mm] \gamma [/mm] minimiert wird.

(Neben der minimalen quadratischen Abweichung koennte man also auch allgemeiner mit einer "mittleren [mm] \delta-Abweichung" [/mm] arbeiten.)

Hallo ihr schlauen koepfe :>
ich komm bei dieser aufgabe nich so ganz weiter...
ich habe mir aber so ein paar sachen ueberlegt:
ich muss ja erstmal zeigen, dass es ein extremum gibt, d.h. [mm] \gamma'(x)=0 [/mm] .
da die ableitung der summe=summe der ableitungen gilt -->
[mm] (a_{1} \delta(x-x_{1}))'+...+(a_{n}\delta(x-x_{n}))'=0 [/mm]
[mm] \gdw a_{1}( \delta(x-x_{1}))'+...+a_{n}(\delta(x-x_{n}))'=0 [/mm] (da ja [mm] a_{i}>0) [/mm]
da alle [mm] a_{i}>0 [/mm] und wir schon wissen, dass [mm] \delta'(0)=0 [/mm] das minimum von [mm] \delta [/mm] ist  und [mm] \delta' [/mm] strikt monoton steigt, wird [mm] a_{1}( \delta(x-x_{1}))'+...+a_{n}(\delta(x-x_{n}))'=0 [/mm]
[mm] \gdw \delta'(x-x_{i})=0 [/mm] wird.
das kann ja aber irgendwie noch nich alles sein, denn dann waere ja [mm] x=x_{i}... [/mm]
und irgendwie denke ich mir rein logisch gesehen, dass es der Stichprobenmittelwert sein muss...
bitte helft mir, bin verwirrt...

        
Bezug
Minimum: Antwort
Status: (Antwort) fertig Status 
Datum: 16:43 Di 20.04.2010
Autor: leduart

Hallo
nimm ein x ausserhalb des intrvalls und zeige, dass es dann immer kleinere Werte gibt.
Gruss leduart

Bezug
                
Bezug
Minimum: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 19:58 Di 20.04.2010
Autor: simplify

meinst du ein [mm] x\not\in [minx_{i},maxx_{i}] [/mm] ???
aber, wenn es doch dann kleinere Werte werden passt das doch nicht mit dem was zu beweisen ist zusammen, nämlich gerade das es für [mm] x\in [minx_{i},maxx_{i}] [/mm] minimal wird oder nicht?

Bezug
                        
Bezug
Minimum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:22 Di 20.04.2010
Autor: Blech

Hi,

> meinst du ein [mm]x\not\in [minx_{i},maxx_{i}][/mm] ???
>  aber, wenn es doch dann kleinere Werte werden passt das
> doch nicht mit dem was zu beweisen ist zusammen, nämlich
> gerade das es für [mm]x\in [minx_{i},maxx_{i}][/mm] minimal wird
> oder nicht?

Lies Dir seine Antwort nochmal durch. Er sagt, daß Du zeigen sollst, daß jedes beliebige x außerhalb des Intervalls nicht das Minimum sein kann, weil es immer ein kleineres gibt (nämlich z.B. die Intervallgrenzen). Also liegt die Lösung auf jeden Fall im Intervall.

ciao
Stefan

Bezug
        
Bezug
Minimum: Antwort
Status: (Antwort) fertig Status 
Datum: 23:06 Di 20.04.2010
Autor: Blech

Hi,

Bis dahin stimmt's:
[mm] $\gamma'(x)=\sum_i a_i\delta'(x-x_i) \overset{!}{=} [/mm] 0$


> steigt, wird [mm]a_{1}( \delta(x-x_{1}))'+...+a_{n}(\delta(x-x_{n}))'=0[/mm]
> [mm]\gdw \delta'(x-x_{i})=0[/mm] wird.

Aber das [mm] $\gdw$ [/mm] ist quatsch.

Wieso sollte eine Summe nur dann 0 werden können, wenn alle Summanden 0 sind?

Wieso rechnest Du die Aufgabe nicht mal für [mm] $a_i=1$ [/mm] und [mm] $\delta(x)=x^2$? [/mm] Dann sieht das ganze gleich viel einfacher aus.

ciao
Stefan


Bezug
                
Bezug
Minimum: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 14:46 Mi 21.04.2010
Autor: simplify

Danke,danke,danke, du hast mir sehr geholfen

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "mathematische Statistik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]