matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikModus von Dichtefkt. mit 2 Var
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Uni-Stochastik" - Modus von Dichtefkt. mit 2 Var
Modus von Dichtefkt. mit 2 Var < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Modus von Dichtefkt. mit 2 Var: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 12:21 So 15.01.2012
Autor: phantom3000

Aufgabe
[mm] fX,Y(x,y)=\left\{\begin{matrix} 1.5+1.5x-1.5x^2-1.5y, & \mbox{für } 0 \le x \le 1 und 0\le y \le 1\\ 0 & \mbox{sonst, } \end{matrix}\right. [/mm]

Welches ist die häufigste Verspätung (also der Modus von (X, Y))?

Hallo zusammen!

Wäre froh, wenn mir jemand bei der obigen Aufgabe helfen könnte. Mein Vorschlag:

Maximieren der Dichtefunktion liefert den Modus:

[mm] \begin{matrix}fx(x,y)\end{matrix}= [/mm] 15-3x
[mm] \begin{matrix}fy(x,y)\end{matrix}= [/mm] -1.5

Wenn ich die beiden Gleichungen nach der notwendigen Bedingung =0 setze, erhalte ich ja für fy keine Lösung.

Wäre dann die Antwort zu der Aufgabe: "Kein Modus"?? Kann ich mir nicht vorstellen, zumal auch die Aufgabe verhältnismässig relativ viel Punkte gibt...Wo ist der Fehler? Vielen Dank für eure Hilfe!

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.


        
Bezug
Modus von Dichtefkt. mit 2 Var: Antwort
Status: (Antwort) fertig Status 
Datum: 16:20 So 15.01.2012
Autor: felixf

Moin!

> [mm]fX,Y(x,y)=\left\{\begin{matrix} 1.5+1.5x-1.5x^2-1.5y, & \mbox{für } 0 \le x \le 1 und 0\le y \le 1\\ 0 & \mbox{sonst, } \end{matrix}\right.[/mm]
>  
> Welches ist die häufigste Verspätung (also der Modus von
> (X, Y))?
>  Hallo zusammen!
>
> Wäre froh, wenn mir jemand bei der obigen Aufgabe helfen
> könnte. Mein Vorschlag:
>  
> Maximieren der Dichtefunktion liefert den Modus:
>  
> [mm]\begin{matrix}fx(x,y)\end{matrix}=[/mm] 15-3x
>  [mm]\begin{matrix}fy(x,y)\end{matrix}=[/mm] -1.5
>  
> Wenn ich die beiden Gleichungen nach der notwendigen
> Bedingung =0 setze, erhalte ich ja für fy keine Lösung.

Du suchst hier nach lokalen Minima in einer offenen Menge. Und hast herausbekommen, dass es dort keine gibt. Was du allerdings ignoriert hast ist der Rand der offenen Menge. Wie sieht die Funktion dort aus? Nimmt sie vielleicht dort ein Maximum an?

> Wäre dann die Antwort zu der Aufgabe: "Kein Modus"?? Kann

Das waere falsch, da sie sehr wohl ein Maximum besitzt.

LG Felix


Bezug
                
Bezug
Modus von Dichtefkt. mit 2 Var: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:51 So 15.01.2012
Autor: phantom3000

Aufgabe
$ [mm] fX,Y(x,y)=\left\{\begin{matrix} 1.5+1.5x-1.5x^2-1.5y, & \mbox{für } 0 \le x \le 1 und 0\le y \le 1\\ 0 & \mbox{sonst, } \end{matrix}\right. [/mm] $

Hallo Felix,

Vielen Dank für den Tipp!

Bin nun so weiterverfahren:

Berechnen der Randdichten. Für Randdichte von fy kein Maximum gefunden, jedoch für fx.

[mm] $\int_{0}^{1} 1.5+1.5x-1.5x^2-1.5y\, [/mm] dy$

= [mm] 1.5y+1.5xy-1.5x^2y-0.75y^2 [/mm]

Mit den Grenzen 0 und 1 für y einsetzen und nach x ableiten und gleich 0 setzen, erhalte ich:

$1.5-3x=0$ somit $x=0.5$

Jetz setze ich wiederum in die Gleichung

[mm] 1.5y+1.5xy-1.5x^2y-0.75y^2 [/mm]

diesmal Grenzen von x ein, also ebenfalls 0 und 1 und leite nach y ab und gleich 0 setzen:

$1.5-1.5y=0$ somit $y=1$

Liefert also $fx(0.5,1)= [mm] 1.5y+1.5xy-1.5x^2y-0.75y^2$ [/mm] den Modus?

LG

Bezug
                        
Bezug
Modus von Dichtefkt. mit 2 Var: Antwort
Status: (Antwort) fertig Status 
Datum: 18:56 So 15.01.2012
Autor: felixf

Moin!

> [mm]fX,Y(x,y)=\left\{\begin{matrix} 1.5+1.5x-1.5x^2-1.5y, & \mbox{für } 0 \le x \le 1 und 0\le y \le 1\\ 0 & \mbox{sonst, } \end{matrix}\right.[/mm]
>  
> Hallo Felix,
>
> Vielen Dank für den Tipp!
>  
> Bin nun so weiterverfahren:
>  
> Berechnen der Randdichten.

Die Randdichten haben damit nichts zu tun.

Du hast eine Funktion $f : U [mm] \to \IR$, [/mm] wobei $U [mm] \subseteq \IR^2$ [/mm] eine Teilmenge ist. Im inneren von $U$ hat $f$ kein Maximum. Also musst du schauen, ob es auf [mm] $\partial [/mm] U$ ein Maximum von $f$ gibt.

Das ist Analysis II und hat nichts mit Wahrscheinlichkeitsrechnung zu tun.

LG Felix


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]