matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenIntegrationstheorieMomenterzeugende Funktion
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Integrationstheorie" - Momenterzeugende Funktion
Momenterzeugende Funktion < Integrationstheorie < Maß/Integrat-Theorie < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Momenterzeugende Funktion: Tipp
Status: (Frage) überfällig Status 
Datum: 12:44 Mo 12.11.2012
Autor: dimi727

Aufgabe
Aufgabe : (Momenterzeugende Funktion)

Sei [mm] \mu [/mm] ein Maß auf [mm] (\IR; B(\IR)). [/mm] Definition der m.e.F. : M(t) = [mm] \integral_{}^{}{e^{tx} \mu (dx)} \in [/mm] [0, [mm] \infty] [/mm] fuer t [mm] \in \IR. [/mm] Nimm an, dass I = {t [mm] \in \IR: [/mm] M(t) < [mm] \infty [/mm] } nicht leer ist. Benutze Aufgabe 3(ii) um zu zeigen, dass log(M(t)) convex ist in I. Hebe den Gebrauch von Fubinis Theorem hervor.

3(ii) :

Hier haben wir gezeigt, dass M beliebig oft differenzierbar ist im Inneren von I und [mm] M^{k} [/mm] = [mm] \integral_{}^{}{x^k e^{tx} \mu (dx)} [/mm] gilt.

Hi Leute,

ich brauche zur oberen Aufgabe [mm] Tipps\Hilfe. [/mm]

Kann ich hier logM einfach 2 mal differenzieren und zeigen,dass die 2Ableitung groesser Null ist?

(log(M))'' = [mm] (\bruch{M'}{M})'= (\bruch{\integral_{}^{}{xe^{tx} \mu (dx)}}{\integral_{}^{}{e^{tx} \mu (dx)}})' [/mm] =  [mm] \bruch{\integral_{}^{}{x^2e^{tx} \mu (dx)}\integral_{}^{}{e^{tx} \mu (dx)}-\integral_{}^{}{xe^{tx} \mu (dx)}\integral_{}^{}{xe^{tx} \mu (dx)}}{(\integral_{}^{}{e^{tx} \mu (dx)})^2} [/mm]

Und weiter? Ich muss ja irgendwo Fubini anwenden und Fubini sagt ja,dass ich innerhalb eines Integrals die I Integrationsreihenfolge aendern kann. Wie hilft mir das weiter?

        
Bezug
Momenterzeugende Funktion: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 21:31 Di 13.11.2012
Autor: dimi727

Hallo? Keiner Lust auf die Aufgabe?

Ich habe ein bisschen weitergeschafft, habe die Variablen umbenannt und Fubini angewandt :

$ [mm] \bruch{\integral_{}^{}{x^2e^{tx} \mu (dx)}\integral_{}^{}{e^{ty} \mu (dy)}-\integral_{}^{}{we^{tw} \mu (dw)}\integral_{}^{}{ue^{tu} \mu (du)}}{(\integral_{}^{}{e^{tx} \mu (dx)})^2} [/mm] $ =
(hier dann Fubini) =
$ [mm] \bruch{\integral\integral_{}^{}{yx^2e^{t(x+y)} \mu (dxdy)}-\integral\integral_{}^{}{wue^{t(w+u)} \mu (dwdu)}}{(\integral_{}^{}{e^{tx} \mu (dx)})^2} [/mm] $

Wie könnte ich jetzt zeigen,dass der Zähler größer 0 ist?

Bezug
        
Bezug
Momenterzeugende Funktion: Fälligkeit abgelaufen
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 13:20 Do 15.11.2012
Autor: matux

$MATUXTEXT(ueberfaellige_frage)
Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Integrationstheorie"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]