matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAnalysis des R1Multiple Choice
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Geschichte • Erdkunde • Sozialwissenschaften • Politik/Wirtschaft
Forum "Analysis des R1" - Multiple Choice
Multiple Choice < eindimensional < reell < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Multiple Choice: Rückfrage
Status: (Frage) beantwortet Status 
Datum: 00:50 Mo 16.07.2007
Autor: etienne83

Aufgabe
Sei f : [a,b] --> R

Wahr oder falsch?

Wenn f in [a,b] 2 mal diffbar ist und in x0 aus ]a,b[ ein Maximum besitzt, dann ist die zweite Ableitung an x0   <0 .

Sorry, dass ich dass nicht im Formelsatz geschrieben habe, bin aber was unter Zeitdruck, schreibe morgen die KLausur. Die obige Aussage ist laut Musterlösung falsch, ich würde gerne die Begründung wisse, ich komm nämlich nicht drauf. Vielen Dank!

Stefan



Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Multiple Choice: Antwort
Status: (Antwort) fertig Status 
Datum: 01:15 Mo 16.07.2007
Autor: schachuzipus

Hallo etienne,

um die Aussage zu widerlegen, genügt es ja, ein Gegenbsp zu finden.

Da hab ich spontan an ne Parabel gedacht.

Nimm mal [mm] f:[-1,1]\to\IR; x\mapsto -x^4 [/mm]

Dieses umgekippte Parabelstück ist sicherlich 2mal diffbar auf [-1;1]

und hat in [mm] x_0=0\in [/mm] (-1,1) ein Maximum, aber f''(0)=0


Sowas in der Art könnte das sein...

LG

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Analysis des R1"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]