matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAussagenlogikNegation von Aussagen
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Aussagenlogik" - Negation von Aussagen
Negation von Aussagen < Aussagenlogik < Logik < Logik+Mengenlehre < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Negation von Aussagen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 15:36 Mi 30.04.2014
Autor: Johnny93

Aufgabe
Negation von Aussagen

Negieren Sie folgenden prädikatenlogischen Aussagen.
(i) n ≥ n0 −→ |an| < ε.
(ii) Für alle ε > 0 gibt es ein n0 ∈ N, so dass für alle n ∈ N gilt A(n, n0).
(iii) Für alle ε > 0 gibt es ein n0 ∈ N, so dass für alle n ∈ N gilt
n ≥ n0 , so auch |an| < ε.

Hallo,
Ich habe ein Problem und zwar habe ich mittlerweile rausgefunden, dass die Negation von "für alle x gilt plaplapla" ist "es existier ein x für das gilt nicht plaplapla". Das macht auch Sinn, allerdings weiß ich nicht wie ich diese Aufgaben lösen soll....
Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Negation von Aussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Mi 30.04.2014
Autor: fred97

Z.B. zu (i)

(i) lese ich so:

    ist n [mm] \ge n_0, [/mm] so ist [mm] |a_n|<\varepsilon. [/mm]

Negation: es gibt ein n [mm] \ge n_0 [/mm] mit [mm] |a_n| \ge \varepsilon. [/mm]

FRED


Bezug
                
Bezug
Negation von Aussagen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:28 Mi 30.04.2014
Autor: Johnny93

Ah super.
Also würde es bei Aufgabe (ii) dann heißen:
es existiert ein ε > 0 für das es kein  n0 ∈ N, so dass ein n ∈ N existiert für das gilt A(n, n0)??
Oder bin ich da jetzt auf dem Holzweg?

Bezug
                        
Bezug
Negation von Aussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 17:23 Mi 30.04.2014
Autor: schachuzipus

Hallo,

> Ah super.
> Also würde es bei Aufgabe (ii) dann heißen:
> es existiert ein ε > 0 für das es kein n0 ∈ N, so
> dass ein n ∈ N existiert für das gilt A(n, n0)??
> Oder bin ich da jetzt auf dem Holzweg?

Ich kann diesem Satz (?) nicht folgen ...

Da fehlen Satzbestandteile ...

Ganz formal musst du bei der Negation jeden Quantor "umdrehen" und die Aussage verneinen, also

Es existiert ein [mm]\varepsilon>0[/mm], so dass zu jedem [mm]n_0\in\IN[/mm] ein [mm]n\in \IN[/mm] existiert, so dass gilt: [mm]\neg A(n,n_0)[/mm]

Gruß

schachuzipus

Bezug
                                
Bezug
Negation von Aussagen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 17:36 Mi 30.04.2014
Autor: Johnny93

Ok Gut danke, dass ich jeden Quantor umdrehen musste wusste ich nicht.
Demzufolge wäre doch dann (iii):

Es existiert ein ε > 0, sodass für jedes n0 ∈ N ein n ∈ N existiert, sodass gilt n ≥ n0, so auch |an| ≥ ε

Soo sagt mir jetzt bitte, dass das richtig ist :D

Bezug
                                        
Bezug
Negation von Aussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 18:10 Mi 30.04.2014
Autor: schachuzipus

Hallo nochmal,

> Ok Gut danke, dass ich jeden Quantor umdrehen musste wusste
> ich nicht.
> Demzufolge wäre doch dann (iii):

>

> Es existiert ein ε > 0, sodass für jedes n0 ∈ N ein n
> ∈ N existiert, sodass gilt n ≥ n0, so auch |an| ≥ ε

>

> Soo sagt mir jetzt bitte, dass das richtig ist :D

Leider nicht. Wie negiert man denn eine Implikation [mm]p \ \Rightarrow \ q[/mm] ??

Die Quantoren hast du richtig umgedreht, aber die Aussage falsch verneint.

Von welcher Struktur ist denn die Ausgangsaussage? (Ich hab's ja eigentlich schon gesagt mit meiner Bemerkung ;-))

Gruß

schachuzipus

Bezug
                                                
Bezug
Negation von Aussagen: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 18:25 Mi 30.04.2014
Autor: Johnny93

Hmm, ich dachte ich hätte das richtig gemacht.
Die Implikation p [mm] \to [/mm] q negitiert man doch so: p [mm] \to \neg [/mm] q
also in unserem beispiel: odass gilt n ≥ n0, so auch |an| < ε
da bleibt unser p ( n ≥ n0) und das q (|an| < ε) wird negitiert, d.h. doch es wird umgedreht also  (|an| ≥ ε)

Ich weiß leider nicht wo ich da den Fehler mache ...

Bezug
                                                        
Bezug
Negation von Aussagen: Antwort
Status: (Antwort) fertig Status 
Datum: 16:19 Fr 02.05.2014
Autor: schachuzipus

Hallo nochmal,

> Hmm, ich dachte ich hätte das richtig gemacht.
> Die Implikation p [mm]\to[/mm] q negitiert man doch so: p [mm]\to \neg[/mm] q

Nein, seit wann sollte das so sein?

Male dir eine WWT auf, dann siehst du, dass das nicht stimmt!

> also in unserem beispiel: odass gilt n ≥ n0, so auch
> |an| < ε
> da bleibt unser p ( n ≥ n0) und das q (|an| < ε) wird
> negitiert, d.h. doch es wird umgedreht also (|an| ≥ ε)

>

> Ich weiß leider nicht wo ich da den Fehler mache ...

Bei der Negation der Implikation ...

[mm]\neg(p\rightarrow q) \ \equiv \ p\wedge\neg q[/mm]

Gruß

schachuzipus

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Aussagenlogik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]