matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenRegelungstechnikNennerpolynom=char.Polynom ?!
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Regelungstechnik" - Nennerpolynom=char.Polynom ?!
Nennerpolynom=char.Polynom ?! < Regelungstechnik < Ingenieurwiss. < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nennerpolynom=char.Polynom ?!: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 14:27 So 27.11.2011
Autor: gebbissimo

Hallo zusammen,

ich werde weder aus dem Lunze noch aus unserem Skript zur RST1 ganz schlau: Das Nennerpolynom der Übertragungsfunktion [mm] G_0(s) [/mm] wird im Skript oft dem charakteristischen Polynom (det(sE-A)=...) gleichgesetzt.

MMn. sollte das ganze aber nur für ein System gelten, das vollständig beobacht- und steuerbar ist, oder? Denn falls ein SYS nicht beobacht- oder steuerbar ist, kommen die nicht beobacht- oder steuerbaren Eigenwerte [mm] "lambda_i" [/mm] ja gar nicht in der Übertragungsfunktion G(s) vor (, denn bei diesen ist [mm] c_i=0 [/mm] oder [mm] b_i=0 [/mm] [Lunze 1]). D.h. alleine die Ordnung des Nennerpolynoms von G(s) ist doch nur dann gleich der Ordnung des char.Polynoms, falls das SYS vollständig steuer- und beobachtbar ist und sonst eben kleiner. Sehe ich etwas falsch?

Im [Lunze 1] wird auch eine Andeutung macht, dass die beiden Polynome nicht immer gleich sind, aber dieser Punkt wird im zweiten Band anscheinend nicht wieder aufgegriffen.

Würde mich SEHR über eine Referenz oder umfassende Antwort freuen. Danke
Chris


P.s.:Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nennerpolynom=char.Polynom ?!: Antwort
Status: (Antwort) fertig Status 
Datum: 19:45 So 27.11.2011
Autor: metalschulze

Hallo gebbissimo,

zunächst mal [willkommenvh]

> Hallo zusammen,
>  
> ich werde weder aus dem Lunze noch aus unserem Skript zur
> RST1 ganz schlau: Das Nennerpolynom der
> Übertragungsfunktion [mm]G_0(s)[/mm] wird im Skript oft dem
> charakteristischen Polynom (det(sE-A)=...) gleichgesetzt.

jepp, das ist mir auch häufig begegnet

>  
> MMn. sollte das ganze aber nur für ein System gelten, das
> vollständig beobacht- und steuerbar ist, oder?

Da hast du recht. Eine Übertragungsfunktion gibt dir ja "nur" das Klemmenverhalten wieder. Also vom Eingang zum Ausgang oder von der "Steuerung" zum "Beobachter".

> Denn falls
> ein SYS nicht beobacht- oder steuerbar ist, kommen die
> nicht beobacht- oder steuerbaren Eigenwerte [mm]"lambda_i"[/mm] ja
> gar nicht in der Übertragungsfunktion G(s) vor (, denn bei
> diesen ist [mm]c_i=0[/mm] oder [mm]b_i=0[/mm] [Lunze 1]). D.h. alleine die
> Ordnung des Nennerpolynoms von G(s) ist doch nur dann
> gleich der Ordnung des char.Polynoms, falls das SYS
> vollständig steuer- und beobachtbar ist und sonst eben
> kleiner. Sehe ich etwas falsch?

Nein, du hast recht. In diesem Zusammenhang hilft dir eventuell der Begriff Minimalrealisierung einer Zustandsraumdarstellung weiter.
Darin sind ebenfalls nur die steuer- und/oder beobachtbaren Modi des Systems enthalten, und die Eigenwerte dieser minimalen Systemmatrix sind identisch mit den Polen des charakteristischen Polynoms.

>
> Im [Lunze 1] wird auch eine Andeutung macht, dass die
> beiden Polynome nicht immer gleich sind,

wenn du z.B. bei der LaPlace Trafo die Anfangsbedingungen nicht als null ansetzt, kriegst du eine Übertragungsfunktion mit zwei Teilen. Der eine Teil gibt dir das Klemmenverhalten (steuer- und beobachtbar), der andere Teil spiegelt die Eigendynamik wider. Dabei können dann weitere Pole und Nullen auftauchen, die vom eingang eben nicht auf das System oder vom System eben nicht auf den Ausgang durchwirken.

> aber dieser Punkt
> wird im zweiten Band anscheinend nicht wieder
> aufgegriffen.

Nur ganz kurz im Zusammenhang mit Entkopplungsnullstellen glaube ich war das...Ich hatte dieses Thema auch vor ein paar Jahren intensiv begrübelt, und ich habe auch kein anderes Buch gefunden, dass mir das zur vollen Zufriedenheit erklärt hat. Zu empfehlen wäre da evtl. noch der "Föllinger" oder auch "Unbehauen".

Gruß Christian

>  
> Würde mich SEHR über eine Referenz oder umfassende
> Antwort freuen. Danke
>  Chris
>  
>
> P.s.:Ich habe diese Frage in keinem Forum auf anderen
> Internetseiten gestellt.


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Regelungstechnik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]