matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenFormale SprachenNerode-Äquivalenzklassen
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Formale Sprachen" - Nerode-Äquivalenzklassen
Nerode-Äquivalenzklassen < Formale Sprachen < Theoretische Inform. < Hochschule < Informatik < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nerode-Äquivalenzklassen: sie zu bestimmen aus Reg. Ausd
Status: (Frage) beantwortet Status 
Datum: 20:01 Mo 28.08.2006
Autor: nureinefrage

Aufgabe
Wandele einen Regulären Ausdruck, z.B. (1((10*2)* + 0*)2 + 0*)*, in einen DFA minimaler Größe um. Bestimme dafür zuvor die Nerode-Äquivalenzklassen.

Hallo, ich weiß zwar wie die Nerode-Relation definiert ist, habe aber leider allgemein keine Ahnung wie man aus einem regulären Ausdruck die Äquivalenzklassen bestimmt.
Wär super, wenn mir da jemand helfen könnte.

Viele Grüße Julia

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Nerode-Äquivalenzklassen: Antwort
Status: (Antwort) fertig Status 
Datum: 07:20 Di 29.08.2006
Autor: mathiash

Hallo und guten Morgen Julia,

Du könntest so vorgehen:

Konstruier Dir erst mal einen NFA fuer die Sprache (mal ihn ruhig hin, d.h. sein Zustandsdiagramm). Das sollte gut gehen.

Dann bezeichne zu zwei bel. Zuständen [mm] s_1,s_2 [/mm] des konstruierten Automaten [mm] L(s_1,s_2) [/mm] die Menge aller Woerter x aus [mm] \{0,1,2\}^*, [/mm]
so dass der Automat, wenn er in Zustand [mm] s_1 [/mm] startet und das Wort x liest, am Ende in Zustand [mm] s_2 [/mm] gelangen kann (d.h. es gibt einen Pfad im
Zustandsdiagramm von [mm] s_1 [/mm] nach [mm] s_2, [/mm] dessen Kanten mit x beschriftet sind).

Sei F die Endzustandsmenge des Automaten, dann nennen wir zwei Zustaende [mm] s_1, s_2 [/mm] aequivalent genau dann, wenn fuer jedes Wort x gilt:
Es gibt einen x-Pfad von [mm] s_1 [/mm] nach F genau dann, wenn es einen x-Pfad von [mm] s_2 [/mm] zu F gibt, d.h.

[mm] L(s_1,F):=\bigcup_{t\in F}L(s_1,t)\:\:\: =\:\:\: L(s_2,F) [/mm]

Sei [mm] s_0 [/mm] der Startzustand des Automaten. Dann gilt:
Die Vereinigungen

[mm] \bigcup_{s'\:\:äquivalent\:\: zu\:\: s} L(s_0,s') [/mm]

sind die Äquivalenzklassen der Nerode-Relation, und Du solltest den minimalen Automaten erhalten, indem Du bei obigem Automaten alle
äquivalenten Zustände zu je einem kontrahierst.

Frohes Schaffen wünscht

Mathias

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Formale Sprachen"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]