matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenLineare Algebra SonstigesNilpotenz
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Lineare Algebra Sonstiges" - Nilpotenz
Nilpotenz < Sonstiges < Lineare Algebra < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nilpotenz: kurze Frage
Status: (Frage) beantwortet Status 
Datum: 21:45 Mi 13.06.2012
Autor: Lu-

Aufgabe
Der Nilpotenzgrad k gibt an, wie groß der größte Jordanblock zum einem EIgenwert ist.

Warum gilt diese Aussage?

        
Bezug
Nilpotenz: Antwort
Status: (Antwort) fertig Status 
Datum: 22:56 Mi 13.06.2012
Autor: blascowitz

Hallo und guten Abend

wir haben also eine Matrix $A$ und es existert ein $k [mm] \in \IN$, [/mm] sodass [mm] $A^{k}=0$, [/mm] wobei $0$ die Nullmatrix bezeichnet.

Welche Eigenwerte hat dann die Matrix $A$? (Das kann man sehr genau sagen).

Und jetzt schauen wir uns mal die Jordanform [mm] $J=T^{-1}AT$ [/mm] an. Wenn du weißt, welche Eigenwerte $A$ hat, wie sieht $J$ dann aus?

Und zu guter letzt überleg dir, wie man Jordanmatrizen potenziert. Schreibt dir doch mal ein kleines Beispiel für eine Matrix in Jordanform hin und rechne davon mal die zweite Potenz aus. Dann sieht man eigentlich recht schnell, wie der Hase läuft.

Viele Grüße
Blasco

Bezug
                
Bezug
Nilpotenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 23:31 Mi 13.06.2012
Autor: Lu-


> wir haben also eine Matrix $ A $ und es existert ein $ k [mm] \in \IN [/mm] $, sodass $ [mm] A^{k}=0 [/mm] $, wobei $ 0 $ die Nullmatrix bezeichnet.

> Welche Eigenwerte hat dann die Matrix $ A $? (Das kann man sehr genau sagen).

Sei A nilpotente Matrix mit Nilpotenindex k, [mm] \lambda [/mm] ein Eigenwert von A, v ein Eigenvektor zu [mm] \\lambda. [/mm]
Dann ist A*v = [mm] \lambda [/mm] v und 0 = [mm] A^k [/mm] v = [mm] \lambda^k [/mm] v. Wegen v [mm] \not= [/mm]  0 folgt [mm] \lambda^n [/mm] = 0.

> Und jetzt schauen wir uns mal die Jordanform $ [mm] J=T^{-1}AT [/mm] $ an. Wenn du weißt, welche Eigenwerte $ A $ hat, wie sieht $ J $ dann aus?

Die Jordanform hat in der Diagonale nur 0-en und in der Nebendiagonale wie immer 1 oder 0.

> wie man Jordanmatrizen potenziert.

Ist A ähnlich zur Jordan normalform, so gibt es eine Transformationsmatrix T mit $ [mm] A=T^{-1}JT [/mm] $ und dann potenziert man A indem man $ [mm] T^{-1}J^{n}T. [/mm] $ rechnet.
d.h. man potenziert nur die diagonaleinträge


Bezug
                        
Bezug
Nilpotenz: Antwort
Status: (Antwort) fertig Status 
Datum: 06:10 Do 14.06.2012
Autor: angela.h.b.


> > wir haben also eine Matrix [mm]A[/mm] und es existert ein [mm]k \in \IN [/mm],
> sodass [mm]A^{k}=0 [/mm], wobei [mm]0[/mm] die Nullmatrix bezeichnet.
>  
> > Welche Eigenwerte hat dann die Matrix [mm]A [/mm]? (Das kann man
> sehr genau sagen).
>  Sei A nilpotente Matrix mit Nilpotenindex k, [mm]\lambda[/mm] ein
> Eigenwert von A, v ein Eigenvektor zu [mm]\\ lambda.[/mm]
>   Dann ist A*v = [mm]\lambda[/mm] v und 0 = [mm]A^k[/mm] v = [mm]\lambda^k[/mm] v.
> Wegen v [mm]\not=[/mm]  0 folgt [mm]\lambda^n[/mm] = 0.
>  
> > Und jetzt schauen wir uns mal die Jordanform [mm]J=T^{-1}AT[/mm] an.
> Wenn du weißt, welche Eigenwerte [mm]A[/mm] hat, wie sieht [mm]J[/mm] dann
> aus?
> Die Jordanform hat in der Diagonale nur 0-en und in der
> Nebendiagonale wie immer 1 oder 0.
>  
> > wie man Jordanmatrizen potenziert.
>  Ist A ähnlich zur Jordan normalform, so gibt es eine
> Transformationsmatrix T mit [mm]A=T^{-1}JT[/mm] und dann potenziert
> man A indem man [mm]T^{-1}J^{n}T.[/mm] rechnet.

Hallo,

so weit ist das richtig.

>  d.h. man potenziert nur die diagonaleinträge

Du redest sicher von den Diagonaleinträgen von J.
Das stimmt nicht.
Hast Du denn mal JNFen potenziert?

LG Angela


>  


Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Lineare Algebra Sonstiges"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]