matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-AnalysisNochmal gleichmäßige Konvergenz
Foren für weitere Studienfächer findest Du auf www.vorhilfe.de z.B. Astronomie • Medizin • Elektrotechnik • Maschinenbau • Bauingenieurwesen • Jura • Psychologie • Geowissenschaften
Forum "Uni-Analysis" - Nochmal gleichmäßige Konvergenz
Nochmal gleichmäßige Konvergenz < Analysis < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Nochmal gleichmäßige Konvergenz: Frage (reagiert)
Status: (Frage) reagiert/warte auf Reaktion Status 
Datum: 15:20 Fr 14.05.2004
Autor: Cathrine

Hi Leute,

ich würde mich freue, wenn ich da ein paar Tipps bekäme, aber KEINE vollständige Lösung...
Unser Tutor hat zu der Aufgabe leider nichts gesagt :-(
Ich weiß nicht, wie man das anfängt, nehme aber mal an, dass man wieder die Definition der gleichmäßigen Stetigkeit nehmen muss???


Also es geht nochmal um gleichmäßige Konvergenz:

Für alle [mm] n \in\IN[/mm]setze man


[mm] A_n = \{x\in\ [0, 1] : \mbox{ es gibt ein } r, k\in\IN, k\le n \mbox{ mit } x = r/k \} [/mm]

und definiere [mm] g_n, h_n : [0, 1] \to \IR [/mm] für alle [mm] n \in\IN[/mm] durch

[mm] g_n(x) = \left\lbrace\begin{matrix} 0 & x \not\in A_n \\ 1 & x \in A_n \end{matrix} \right.[/mm]



sowie

[mm] h_n(x)= \left\lbrace\begin{matrix} n² & 1/n+1
Man soll jetzt beweisen, dass [mm] (g_n) [/mm] und [mm] (h_n) [/mm]nicht gleichmäßig konvergieren und zwar ohne folgendes zu benutzen:

Es sei [mm] f_n [/mm] eine Folge Riemann-integrierbarer Abbildungen von a,b nach R, die gleichmäßig gegen eine Abbildung [mm] f_0: [a,b]\to\IR[/mm] konvergiert. Dann ist [mm] f_0 [/mm] wieder Riemann-integrierbar und es gilt


[mm]\integral_a^b f_0(x) dx=\limes \integral_a^b f_n(x) dx[/mm]



Vielen Dank, Cathy  



        
Bezug
Nochmal gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 19:12 Fr 14.05.2004
Autor: Julius

Liebe Cathrine,

> ich würde mich freue, wenn ich da ein paar Tipps bekäme,
> aber KEINE vollständige Lösung...

Okay. :-)

>  Unser Tutor hat zu der Aufgabe leider nichts gesagt :-(
>  Ich weiß nicht, wie man das anfängt, nehme aber mal an,
> dass man wieder die Definition der gleichmäßigen Stetigkeit
> nehmen muss???
>  
>
> Also es geht nochmal um gleichmäßige Konvergenz:
>  
> Für alle [mm]n \in\IN[/mm]setze man
>
>
> [mm]A_n = \{x\in\ [0, 1] : \mbox{ es gibt ein } r, k\in\IN, k\le n \mbox{ mit } x = r/k \}[/mm]
>  
>
> und definiere [mm]g_n, h_n : [0, 1] \to \IR[/mm] für alle [mm]n \in\IN[/mm]
> durch
>  
> [mm] > g_n(x) = \left\lbrace\begin{matrix} > 0 & x \not\in A_n \\ > 1 & x \in A_n > \end{matrix} > \right.[/mm]


Schauen wir uns erst einmal die Aufgabe bis hierhin an.

Erst einmal bestimmt du den punktweisen Grenzwert dieser Funktionenfolge, also die Funktion:

$g(x):= [mm] \lim\limits_{n \to \infty} g_n(x)$. [/mm]

Unterscheide dabei die Fälle:

1) $x [mm] \in \IQ\cap [/mm] [0,1]$
2) $x [mm] \in (\IR \setminus \IQ)\cap [/mm] [0,1]$

So, jetzt nimmst du an, [mm] $(g_n)_{n \in \IN}$ [/mm] würde gleichmäßig gegen diese Funktion $g$ konvergieren. Dann müsste es für alle [mm] $\varepsilon>0$ [/mm] eine [mm] $n_0 \in \IN$ [/mm] geben, so dass für alle $n [mm] \ge n_0$ [/mm] und alle $x [mm] \in [/mm] [0,1]$ folgendes gilt:

[mm] $|g(x)-g_n(x)| [/mm] < [mm] \varepsilon$. [/mm]

Wähle nun speziell [mm] $\varepsilon:=\frac{1}{2}$. [/mm] Dann müsste es also ein [mm] $n_0 \in \IN$ [/mm] geben, so dass für alle $n [mm] \ge n_0$ [/mm] und alle $x [mm] \in [/mm] [0,1]$ folgendes gilt:

[mm] $|g(x)-g_n(x)| [/mm] < [mm] \frac{1}{2}$. [/mm]

Dann gilt für [mm] $x_0:= \frac{1}{n_0+1}$: [/mm]

[mm] $|g(x_0) [/mm] - [mm] g_{n_0}(x_0| [/mm] = [mm] \ldots$. [/mm]

Versuche es mal selber zu Ende zu führen.

Liebe Grüße
Julius


Bezug
                
Bezug
Nochmal gleichmäßige Konvergenz: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 22:27 So 16.05.2004
Autor: Cathrine

Mit der anderen Gleichung muss man nun genau so vorgehen nehme ich an???

Bezug
                        
Bezug
Nochmal gleichmäßige Konvergenz: Antwort
Status: (Antwort) fertig Status 
Datum: 01:34 Mo 17.05.2004
Autor: Julius

Liebe Cathrine!

Ja, nur dass es hier wesentlich einfacher geht.

Für die (punktweise) Grenzfunktion [mm] $h(x):=\lim\limits_{n \to \infty} h_n(x)$ [/mm] gilt offenbar: $h [mm] \equiv [/mm] 0$. (Warum? Begründe das bitte selber!)

Nun gibt es aber zu jedem [mm] $\varepsilon>0$ [/mm] und jedem $n [mm] \in \IN$ [/mm] dummerweise ein $x [mm] \in [/mm] [0,1]$ mit

[mm] $|h_n(x)-h(x)|= h_n(x)=n^2 [/mm] > [mm] \varepsilon$, [/mm]

so dass es also kein [mm] $n_0 \in \IN$ [/mm] geben kann, für dass

[mm] $|h_n(x) [/mm] - h(x)| < [mm] \varepsilon$ [/mm]

für alle $x [mm] \in [/mm] [0,1]$ und alle $n [mm] \in \IN$, [/mm] $n [mm] \ge n_0$ [/mm]  gilt.

Mist. Oder? Nee: Gott sei Dank, denn das wollten wir ja zeigen! ;-)

Liebe Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Analysis"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]