matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenAlgebraNormalteiler, Isomorphismus
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Deutsch • Englisch • Französisch • Latein • Spanisch • Russisch • Griechisch
Forum "Algebra" - Normalteiler, Isomorphismus
Normalteiler, Isomorphismus < Algebra < Algebra+Zahlentheo. < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalteiler, Isomorphismus: Frage (beantwortet)
Status: (Frage) beantwortet Status 
Datum: 16:15 So 02.12.2012
Autor: Lu-

Aufgabe
Es seien [mm] G_1 [/mm] ,.., [mm] G_n [/mm] Gruppen und [mm] N_i [/mm] Normalteiler von [mm] G_i [/mm] für 1 [mm] \le [/mm] i [mm] \le [/mm] n. Beweisen SIe dass [mm] N_1 \times [/mm] .. [mm] \times N_n [/mm] Normalteiler [mm] G_1 \times [/mm] .. [mm] \times G_n [/mm] und dass
[mm] (G_1 \times [/mm] .. [mm] \times G_N) /(N_1 \times [/mm] .. [mm] \times N_n) \cong (G_1 /N_1) \times [/mm] .. [mm] \times (G_n/N_n) [/mm]

Das erste habe ich nun fehlt mir:
[mm] (G_1 \times [/mm] .. [mm] \times G_N) /(N_1 \times [/mm] .. [mm] \times N_n) \cong (G_1 /N_1) \times [/mm] .. [mm] \times (G_n /N_n) [/mm]

Wie mache ich das? Hab da leider keinen Plan...?

Wir haben mal defeniert:
[mm] G_1 [/mm] x .. x [mm] G_n [/mm] = G
mit Verknüpfung [mm] (a_1 [/mm] ,.., [mm] a_n) (b_1 [/mm] ,.., [mm] b_n)= (a_1 b_1 [/mm] ,.., [mm] a_n b_n) [/mm] ist eine Gruppe.


        
Bezug
Normalteiler, Isomorphismus: Antwort
Status: (Antwort) fertig Status 
Datum: 17:20 So 02.12.2012
Autor: felixf

Moin!

> Es seien [mm]G_1[/mm] ,.., [mm]G_n[/mm] Gruppen und [mm]N_i[/mm] Normalteiler von [mm]G_i[/mm]
> für 1 [mm]\le[/mm] i [mm]\le[/mm] n. Beweisen SIe dass [mm]N_1 \times[/mm] .. [mm]\times N_n[/mm]
> Normalteiler [mm]G_1 \times[/mm] .. [mm]\times G_n[/mm] und dass
>  [mm](G_1 \times[/mm] .. [mm]\times G_N) /(N_1 \times[/mm] .. [mm]\times N_n) \cong (G_1 /N_1) \times[/mm]
> .. [mm]\times (G_n/N_n)[/mm]
>  Das erste habe ich nun fehlt mir:
>  [mm](G_1 \times[/mm] .. [mm]\times G_N) /(N_1 \times[/mm] .. [mm]\times N_n) \cong (G_1 /N_1) \times[/mm]
> .. [mm]\times (G_n /N_n)[/mm]
>  
> Wie mache ich das? Hab da leider keinen Plan...?

Hattet ihr den Homomorphiesatz? Damit ist es sehr einfach. Gib einen passenden Homomorphismus [mm] $G_1 \times \dots \times G_n \to (G_1/N_1) \times \dots \times (G_n/N_n)$ [/mm] an, der surjektiv ist und dessen KErn [mm] $N_1 \times \dots \times N_n$ [/mm] ist. Daraus folgt (a) der gesuchte Isomorphismus und (b) dass [mm] $N_1 \times \dots \times N_n$ [/mm] ein Normalteiler in [mm] $G_1 \times \dots \times G_n$ [/mm] ist.

Wenn ihr den Homomorphiesatz nicht hattet, musst du direkt eine Abbildung [mm] $(G_1 \times \dots \times G_n) [/mm] / [mm] (N_1 \times \dots \times N_n) \to (G_1/N_1) \times \dots (G_n/N_n)$ [/mm] angeben, zeigen dass diese wohldefiniert ist, dass sie injektiv ist, ein Homomorphismus ist und surjektiv ist. Ist nicht schwer, aber muehsam. Mit dem Homomorphiesatz (manchmla auch als 1. Isomorphiesatz bekannt) ist es wesentlich einfacher.

LG Felix


Bezug
                
Bezug
Normalteiler, Isomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:36 So 02.12.2012
Autor: Lu-

Vielen Dank. Ja an den satz hatte ich nicht gedacht,

LG

Bezug
                        
Bezug
Normalteiler, Isomorphismus: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 17:50 So 02.12.2012
Autor: felixf

Moin!

> Vielen Dank. Ja an den satz hatte ich nicht gedacht,

Bitte :)

Das ist ein sehr praktischer Satz, der meist unterschaetzt wird bzw. abschreckt. Aber man kann ihn immer wieder brauchen und er nimmt einen dann sehr viel Arbeit ab :)

LG Felix



Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Algebra"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]