matheraum.de
Raum für Mathematik
Offene Informations- und Nachhilfegemeinschaft

Für Schüler, Studenten, Lehrer, Mathematik-Interessierte.
Hallo Gast!einloggen | registrieren ]
Startseite · Forum · Wissen · Kurse · Mitglieder · Team · Impressum
Forenbaum
^ Forenbaum
Status Hochschulmathe
  Status Uni-Analysis
    Status Reelle Analysis
    Status UKomplx
    Status Uni-Kompl. Analysis
    Status Differentialgl.
    Status Maß/Integrat-Theorie
    Status Funktionalanalysis
    Status Transformationen
    Status UAnaSon
  Status Uni-Lin. Algebra
    Status Abbildungen
    Status ULinAGS
    Status Matrizen
    Status Determinanten
    Status Eigenwerte
    Status Skalarprodukte
    Status Moduln/Vektorraum
    Status Sonstiges
  Status Algebra+Zahlentheo.
    Status Algebra
    Status Zahlentheorie
  Status Diskrete Mathematik
    Status Diskrete Optimierung
    Status Graphentheorie
    Status Operations Research
    Status Relationen
  Status Fachdidaktik
  Status Finanz+Versicherung
    Status Uni-Finanzmathematik
    Status Uni-Versicherungsmat
  Status Logik+Mengenlehre
    Status Logik
    Status Mengenlehre
  Status Numerik
    Status Lin. Gleich.-systeme
    Status Nichtlineare Gleich.
    Status Interpol.+Approx.
    Status Integr.+Differenz.
    Status Eigenwertprobleme
    Status DGL
  Status Uni-Stochastik
    Status Kombinatorik
    Status math. Statistik
    Status Statistik (Anwend.)
    Status stoch. Analysis
    Status stoch. Prozesse
    Status Wahrscheinlichkeitstheorie
  Status Topologie+Geometrie
  Status Uni-Sonstiges

Gezeigt werden alle Foren bis zur Tiefe 2

Navigation
 Startseite...
 Neuerdings beta neu
 Forum...
 vorwissen...
 vorkurse...
 Werkzeuge...
 Nachhilfevermittlung beta...
 Online-Spiele beta
 Suchen
 Verein...
 Impressum
Das Projekt
Server und Internetanbindung werden durch Spenden finanziert.
Organisiert wird das Projekt von unserem Koordinatorenteam.
Hunderte Mitglieder helfen ehrenamtlich in unseren moderierten Foren.
Anbieter der Seite ist der gemeinnützige Verein "Vorhilfe.de e.V.".
Partnerseiten
Weitere Fächer:

Open Source FunktionenplotterFunkyPlot: Kostenloser und quelloffener Funktionenplotter für Linux und andere Betriebssysteme
StartseiteMatheForenUni-StochastikNormalverteilung
Foren für weitere Schulfächer findest Du auf www.vorhilfe.de z.B. Philosophie • Religion • Kunst • Musik • Sport • Pädagogik
Forum "Uni-Stochastik" - Normalverteilung
Normalverteilung < Stochastik < Hochschule < Mathe < Vorhilfe
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien

Normalverteilung: Frage
Status: (Frage) beantwortet Status 
Datum: 13:42 Do 07.04.2005
Autor: crowmat

Ich hab folgende Aufgabe gegeben: Das Füllgewicht von Bierflaschen variiert produktionsbedingt zufällig noormalverteilt um den Erwartungswert  [mm] \mu [/mm] = 0.503 mit einer Varianz von sigma²=(0.002)².
Wie groß müßte bei gleichem Wert für Sigma, der parameter  [mm] \mu [/mm] mindestens sein, damit eine füllmenge von wenigstens 0.5 mit der wahrscheinlichkeit 0.98 erreicht wird!

Dazu hab ich folgendes gerechnet, was mich aber nicht weiterbringt!
P(x>=0.5)=0.98
Ich hab versucht die transformation anzuwenden, bin aber gescheitert!Hat einer von euch eine Idee?

Ich habe diese Frage in keinem Forum auf anderen Internetseiten gestellt.

        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 15:54 Do 07.04.2005
Autor: Brigitte

Hallo crowmat!

> Ich hab folgende Aufgabe gegeben: Das Füllgewicht von
> Bierflaschen variiert produktionsbedingt zufällig
> noormalverteilt um den Erwartungswert  [mm]\mu[/mm] = 0.503 mit
> einer Varianz von sigma²=(0.002)².
> Wie groß müßte bei gleichem Wert für Sigma, der parameter  
> [mm]\mu[/mm] mindestens sein, damit eine füllmenge von wenigstens
> 0.5 mit der wahrscheinlichkeit 0.98 erreicht wird!
>  
> Dazu hab ich folgendes gerechnet, was mich aber nicht
> weiterbringt!
>  P(x>=0.5)=0.98

x ist also Deine Zufallsvariable, die das Füllgewicht beschreibt. Von ihr weiß man, dass sie normalverteilt ist mit der Varianz [mm] $0.002^2$ [/mm] und unbekanntem Erwartungswert [mm] $\mu$. [/mm] Dein Ansatz ist völlig korrekt. Wenn man es ganz genau nimmt, sollte in der Aufgabenstellung stehen, dass die gesuchte Wkt. mindestens 0.98 betragen soll. Damit hat man dann

[mm] $P(x\ge 0.5)\ge0.98$ [/mm]

Durch Standardisierung erhält man

[mm] $1-\Phi\left(\frac{0.5-\mu}{0.002}\right) \ge [/mm] 0.98$

oder

[mm] $\Phi\left(\frac{0.5-\mu}{0.002}\right)\le [/mm] 0.02$

Weißt Du nun wie es weitergeht (Stichwort Quantil) oder ist das gerade der Haken?

[mm] $\Phi(y)\le [/mm] p$ ist doch äquivalent zu [mm] $y\le u_p$, [/mm] wobei [mm] $u_p$ [/mm] das p-Quantil der Standardnormalveretilung bezeichnet. Kommst Du damit weiter?

Viele Grüße
Brigitte



Bezug
                
Bezug
Normalverteilung: Mitteilung
Status: (Mitteilung) Reaktion unnötig Status 
Datum: 16:08 Do 07.04.2005
Autor: Julius

Liebe Brigitte!

Sorry, dass ich auch noch geantwortet hatte. Ich hatte schon vor einer Stunde begonnen die Antwort zu schreiben, musste dann plötzlich weg und konnte sie dann erst wegschicken. In der Zwischenzeit hatte mir matux offenbar die Bearbeitungssperre "geklaut". ;-)

Liebe Grüße
Julius :-)

Bezug
        
Bezug
Normalverteilung: Antwort
Status: (Antwort) fertig Status 
Datum: 16:05 Do 07.04.2005
Autor: Julius

Hallo!

Dein Ansatz ist völlig richtig!

Jetzt standardisieren wir die Zufallsvariable und erhalten:

[mm] $P\left( \frac{X-\mu}{0.02} \ge \frac{0.5-\mu}{0.002} \right) [/mm] = 0.98$, also:

$1 - [mm] \Phi \left( \frac{0.5-\mu}{0.002} \right) [/mm] = 0.98$

und

[mm] $\Phi \left( \frac{0.5-\mu}{0.002} \right) [/mm] =0.02$.

Nun liefert die Symmetrie der Standardnormalverteilung:

[mm] $\Phi \left( \frac{\mu - 0.5}{0.002} \right) [/mm] =0.98$.

So, und jetzt schaust du in die Tabelle der Verteilungsfunktion der Standardnormalverteilung und suchst den Wert mit

[mm] $\Phi(z) [/mm] = 0.98$.

Dann setzt du

[mm] $\frac{\mu - 0.5}{0.002} [/mm] = z$

und löst nach [mm] $\mu$ [/mm] auf.

Viele Grüße
Julius

Bezug
Ansicht: [ geschachtelt ] | ^ Forum "Uni-Stochastik"  | ^^ Alle Foren  | ^ Forenbaum  | Materialien


^ Seitenanfang ^
www.unimatheforum.de
[ Startseite | Forum | Wissen | Kurse | Mitglieder | Team | Impressum ]